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PREFACE 

Earth  motion  is by  no means  a new study - -  as early as 132 A. D. the  Chinese  scholar-astronomer Chang 
Hen devised  an  instrument  to  record  earth  motion  during  earthquakes. What is  new, or comparatively so, i s  
the  study of explosively induced earth  motion. With the  discovery of high explosives  man had at  his  disposal a 
force  capable of causing  earth  motion of significant  magnitude,  and as a result  there  developed  an  interest in 
explosion  effects in earth  (geoplosics),  an  interest which until World War I1 was  centered  chiefly  in  preventing 
damage  caused by blasting in construction,  quarrying,  and  mining  operations. When World War I1 brought  the 
use  of large  high-explosive  bombs  burst  at  the  surface and within  the  earth,  interest  quickened in the  effects of 
earth  motion a s  a  factor in the  design of fortifications. But it  was not until  the  development of nuclear explo- 
sives  that  man  succeeded in harnessing a force  that  matched  natural  seisms in the  creation of earth  motion of 
tectonic  proportions.  Interest in geoplosics now came  to  maturity  because  the  physical  devastation  demonstrated 
by airblast  from  nuclear  weapons  made  it  imperative  that  one  line of our defense be underground  structures 
housing missiles,  men,  and  materiel. 

Earth  motion  has  been  measured on all  nuclear  weapons  effects  tests  since  the  first  test  device,  Trinity, 
was  fired  near  Alamogordo, New Mexico, in the summer of 1945. In addition,  earth  motion  from  high-explosive 
detonations  and  its  effect on structures  has been studied  under  programs  sponsored by various  government 
agencies. An ever-increasing  amount of effort  has gone into  the  study of earth  motion, both theoretical  and 
experimental, but  unlike the  relatively  uncomplicated  physics of the  shock wave in the  medium of a i r ,  under- 
standing  the s t r e s s  wave in ear th   is  confounded by the  very  properties of the  medium  in which the wave moves. 
Despite  the  quantity of useful  theory and data  developed by these  efforts, many old  questions  remain  unanswered 
and with  every  advance in missile technology new questions  arise, so that  geoplosics  can  be  expected  to  remain 
a  dynamic  science  for  some  time  to  come. 

With this in mind,  it  seemed an appropriate  time  to  sum up our understanding of the  behavior of explosions 
underground,  especially  those  burst within the  surface, which a r e  the  explosions of practical  interest,  the  prop- 
agation of explosively-induced  waves  through  the  earth, how the  earth  is  transformed  under  their  influence,  and 
how these  waves  affect  buried  structures. In the  process  it  will  become  clear what we do not yet know and what 
we need to know. 

This book is not meant  to be a handbook of design  specifications. It is  meant to be an  authoritative  source- 
book. Between  these two is the  difference,  for  example,  between  the  laboratory  course and the  lecture  course. 
It contains  more philosophy than  figures,  more  hypotheses  than  certainties.  These  hypotheses  are  given when- 
ever  possible  with  the  empirical  information  and  the  theory upon which they a r e  based SO that  the  reader  can 
make  his own judgment of their  validity. We strive  to avoid the temptation  to  speculate  intuitively without factual 
or theoretical foundation for  the  arguments  presented,and  we  attempt  to  present  objectively  all  approaches, fa- 
vored and unfavored,  with  the  reasons  for  preference of one or  another  type of analysis  or  procedure  clearly 
stated. So that  the  sourcebook need not be  classified, a few relevant  references are not discussed. In addition 
new material  appearing  during  the  late  stages of compilation of the  sourcebook  is not referenced. It is hoped that 
these  deficiencies  will be corrected in future  editions. 

The  editor-in-chief  expresses  his  indebtedness  to  his  associates  at  Stanford  Research  Institute, Drs. 
R.  B. Vaile, Jr., E. G. Chilton, G. N. Bycroft, L. Seaman,  and  Mr. L. M. Swift, for  review of material  and many 
helpful  suggestions. In particular,  the  editor  wishes  to  acknowledge  his  debt  to  his  associate  editor,  Mrs.  Phyllis 
(Flanders)  Dorset, without whom this  sourcebook would not have been attempted.  Thanks a re   a l so  extended  to 
Mr.  John  Lewis,  Commanders  James  Andrews  and  Worthen  Walls,  Majors  Bruce  Carswell,  Merrill  Barnes, 
Patrick Donohoe, and Floyd Henk, Lieutenant  Commander  John Healy, and  Captain  James  Choromokos, all of the 
Defense Atomic Support Agency, who over  the years have  given  their  wholehearted  support  to  the  project. In 
addition, we wish  to  thank  the many people  and  organizations who have  contributed  to  this  effort by making  data, 
photographs,  and  drawings  available, which were not readily  available  in  reports or other  doucments.  These 
contributions are gratefully acknowledged. 

Fred M. Sauer 
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NOTATION 

CHAPTER V-1 

a = particle  acceleration 

A = the  cross  sectional  area included in the width b 

b 

C 

C 1 

c2 

CR 

C 
S 

Cf 

cP 
d 

= unit width or  spacing  between  ribs  or  beams 

= seismic  velocity  (dilatation) 

= seismic  velocity in medium  (dilatation) 

= seismic  velocity in structure  (dilatation) 

= Rayleigh wave velocity 

= seismic  velocity  (shear  or  distortion) 

= t * = specific  heat  under  constant  tension 

= the  specific  heat  at  constant  pressure 

= effective  depth of structural  member 

(at x 

dl = depth below surface  to  loaded  element 

d2 = depth below surface  to  base of footing 

e = base of natural  logarithms (2.718 . . . .) 
E = modulus of elasticity 

Es = modulus of elasticity  at  constant  entropy 

Et = modulus of elasticity  at  constant  temperature 

f = axial   s t ress  

G = modulus of rigidity 

Gs = the  dynamic  modulus of rigidity 

Gt = the  static  modulus of rigidity 

I = effective  moment of inertia 

K = bulk  modulus of elasticity 

Ks = bulk  modulus  corresponding  to  the  adiabatic  compression  or  the  dynamic  bulk  modulus 

Kt = bulk modulus  corresponding  to  the  isothermal  compression  or  the  static bulk modulus 

L = span  or  length 

m = mass  per unit of length 

m' = mass of buried  element  and  portion of overburden 

p = peak  intensity of load or   s t ress  on structural  element 
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Pm 

P(t) 

P 

q 

41 
r 

R' 

RO 

S 

t 

t 

td 

tm 

tr 
T 

T '  

Ta 

Td 

Tr 

V 

V 

V 

V 

'a 

W 

X m 

X 
Y 

Y 

Y 

=2 

13 

= peak  intensity of force on single-degree-of-freedom  system 

= force  acting on standard  linear  oscillator 

= compressive  force 

= plastic  resistance of structural  element 

= force  causing  yielding of structural  element 

= mean  radius of arch  or  great  circle of dome 

= constant  associated with natural  period of vibration of reinforced  concrete  beams 

= constant  associated with natural  period of vibration of beams 

= specific  entropy 

= thickness of arch  or  dome  (Section  V-1.5.2) 

= absolute  temperature  (Section V-1.6.2) 

= effective  duration of force on single-degree-of-freedom  system 

= time of maximum  response of single-degree-of-freedom  system 

= r ise   t ime of loading on single-degree-of-freedom  system 

= natural  period of vibration of single-degree-of-freedom  system 

= modified  period of vibration of buried  structure 

= natural  period of vibration of arch 

= natural  period of vibration of dome 

= natural  period of vibration of rectangular  element 

= particle  velocity  (Section V-1.3 .l) 

= specific  volume  (Section V-1.6.2) 

= particle  velocity  at  impacted  end of rod 

= critical  impact  velocity 

= original  volume of arch 

= weapon yield 

= maximum  deflection 

= effective  yield  deflection 

= depth below the  surface 

= acceleration of base of standard  linear  oscillator 

= depth  for a given  overpressure  at which a  given stress  occurs  from a detonation of yield W 

= depth  for  a  given  overpressure  at which a  given stress  occurs  from a detonation of yield W 

= the  ratio of the  damping  present  to  the  critical  damping 

= peak  overpressure in psi 

I 

2 

*P" 

AVa = change in volume  for  arch 

X 



AVr = maximum  change in volume  for  rectangular  structure 

E 

E 

x 

CL 

PC 

P r  

V 

P 

p 1  

p2  

0 

O1 

O2 

O h  

O r  

OV 

cp 

cp 

= strain 

= strain  corresponding  to  the  ultimate  strength of the material 

= wave length  (Rayleigh) 

= ratio of maximum  to  effective  yield  resistance of structural  element 

= ratio of maximum  circumferential  strain  to  yield  strain  in  arch 

= ratio of the  maximum  deflection  to  the  yield  deflection 

= Poisson's  ratio 

= density 

= density of medium 

= density of structure 

= s t r e s s  

= incident s t r e s s  in  medium 

= s t ress  in structure 

= horizontal   stress 

= reflected  stress  in medium 

= vert ical   s t ress  

= angle of internal  friction  (Section V-1.4.4) 

= percentage of tensile  reinforcement at midspan  (Section V-1.5.2) 
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NOTATION 

CHAPTER V-2 

b =  2K tan cp' 

bC 

bc = width of buried  structure 

bd = width of ditch 

B = -  K tan q 
R 

c = cohesive  strength of soil 

D = depth  factor  for  cratering 

e = base of natural  logarithms (2.718 . . . .) 
E = modulus of elasticity of medium 

E = modulus of elasticity of liner 

h = height  above roof of structure 

he = height of equal  settlement  (measured  from roof of structure) 

K = ratio of horizontal to ver t ical   s t ress  in soil  (Section V-2.2.3) 

KA = coefficient of "active  pressure" in soil 

KO = coefficient of "earth  pressure  at  rest" 

p = vertlcal   stress  at  any depth 

pa = radial  stress  acting  across  the  structure-soil  interface 

pb = circumferential  stress in liner 

pc = circumferential   stress in medium  adjacent  to  liner 

p,,, = peak  intensity of force on single-degree-of-freedom  system 

po = vertical  stress  acting on roof of structure  (Section V-2.2.3) 

po = horizontal  radial  stress in medium at large  distances  from  structure  (Section V-2.2.1) 

11, = peak  overpressure 
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pY 

pz 

PC0 

gY 
r 

R 

S 

t 

td 

T 

U 

U 
0 

W 

W 

X 

X m 

Y 
X 

Y 

z 

a 

a 

CY 

P 

Y 

E 

x 

V 

- 
V 

T 

= vertical  stress  in  medium  at  depth y including  effects of attenuation 

= horizontal  stress  at  depth z on a  cylinder with radius r 

= horizontal   stress  at   an infinite depth 

= force  causing  yielding of single-degree-of-freedom  system 

= radius of liner;  radius of great  circle  for  spherical  liner 

= ratio of a rea  of roof of structure  to  perimeter of roof  lying  between  assumed  planes of slip 

= soil  factor  for  cratering 

= thickness of liner  or  diaphragm 

= effective  duration of force on single-degree-of-freedom  system 

= natural  period of vibration of single-degree-of-freedom  system 

= displacement  at  any  depth 

= displacement of roof 

= unit  weight of soil 

= weapon yield 

= vertical  coordinate  measured  from roof of structure 

= maximum  deflection of single-degree-of-freedom  system 

= effective  yield  deflection of single-degree-of-freedom  system 

= depth below surface 

= depth below  surface 

= slope of mound over  structure with respect  to  horizontal  (Section V-2.2.1) 

= limiting  value of constant  defining  displacement at which shear  failure  occurs in soil  (Section V-2.2.3) 

= constant  for  decay of displacement 

= - - = relative  stiffness of medium  and  liner 1 - v - ~  E r  
1 - v 2  Et 

= circumferential  strain  in  medium  or  lining at structure-soil  interface 

= scaled  slant  range 

= scaled depth of charge  for  cratering 

= Poisson's  ratio of medium 

= Poisson's  ratio of liner 

= shear  stress  at  any  depth 

T = limiting  shear  stress 

cp = angleof  internal  friction of natural  soil 

cp' = angle of internal  friction of the  backfill 

max 
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NOTATION 

CHAPTER V-3 

B 

C 

- 
C 

C 

D 

E 

EC 

Ef 

Em 

h 

H 

I 

KC 

Kt 

L 

L 

P 
P 

qcr 

r 

'f 
R 

RC 

t 

tC 

tf 

V 

= horizontal  span or width of opening 

= seismic  velocity  (dilatation) 

= cohesive  strength 

= width of opening 

= thickness of the  spall 

= modulus of elasticity of lining  material 

= modulus of elasticity of the  critical  stratum 

= energy  absorption  per unit of surface area 

= the  modulus of elasticity of medium 

= the  modulus of elasticity of lining 

= height of tunnel 

= height of opening (Section V-3.1.1)  

= moment of inertia of lining 

= maximum  compressive  strain  (stress)  concentration  factor 

= maximum  tensile  strain  (stress)  concentration  factor 

= span of slab  in  stratified  formations o r  width of pillar  in  homogeneous  formations 

= length of pulse 

= amplitude of sinusoidal  component of loading on structural  lining 

= amplitude of p  giving  a  compatible stress  and  deformation  between  the  structural  lining  and  the  packing 

= magnitude of uniform  component of s t r e s s  on structural  lining 

= approximate  critical  buckling  load (a uniform  stress) of structural  lining 

= mean  radius of lining 

= plastic  resistance of the  filler  or  crushable  material 

= range measured  from  point of detonation 

= empirical  range  from  center of detonation  corresponding  to  closure  from  spalling 

= thickness of a solid  lining 

= thickness of critical  slab 

= thickness of the filler or  crushable  material 

= velocity of initial  spall 
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v = average  shearing  stress 

w = unit  weight of rock 

w = effective unit  weight of critical  stratum 

w = effective unit  weight of single  stratum 

W = width of opening or width of pillar  (Table V-3.1) 

W = weapon yield  (Section V-3.1.2) 

W' = width of pillar 

y = depth 

A = minimum  deformation of surface of rock 

max 

C 

= maximum  deformation of surface of rock  opening 

6 = total  maximum  deflection of structural  lining 

'max 

6 = value of 6 corresponding  to p1 

E = peak  radial  strain  in  medium 

E = strain  corresponding  to  ultimate  tensile  strength 

E = effective  strain in stratified  formation 

e t  = strain  corresponding  to  modulus of rupture 

E = ultimate  compressive  strain in rock 

r, q ,  [ = coefficients  defining  shape of ovaloidal  openings 

v = Poisson's  ratio of medium m 

p = density of medium 

u,, = horizontal s t r e s s  

u = maximum  stress  produced by flexure 

u = unconfined compressive  strength 

u = vertical   stress 

u = vertical component of s ta t ic   s t ress  

T = maximum  shearing  stress max 

cp = angle of internal  friction 

= maximum  deflection of critical  slab 

P 

U 

max 

V 

V 



NOTATION 

CHAPTER V-4 

A = spectrum  acceleration 

A = ratio of maximum  internal  energy  to  internal  energy  at  initial  yielding of spring  in  simple  oscillator 

D = spectrum  displacement 

D = yield  value of spectrum  displacement 

E = modulus of elasticity of material 

f = natural  frequency of vibration of simple  oscillator 

g = acceleration of gravity 

h = length of time  interval  in  numerical  integration 

i = impulse  or area under  force-time  curve 

I = moment of inertia of cross  section of beam 

K = elastic  stiffness of simple  oscillator  representing  beam 

K' = plastic  stiffness of simple  oscillator  representing  beam 

L = span of beam 

M = mass  of simple  oscillator  representing  beam  with  elastic  response 

M' = mass of simple  oscillator  representing  beam  with  plastic  response 

Mc = bending  moment at center of beam  for  elastic  response 

ML = bending  moment at  center of beam  for  plastic  response 

Mx = bending  moment  at  any  point  x  along  beam 

m = mass of beam  per  unit of length 

P = magnitude of total  uniformly  distributed  load  applied  to  beam 

Pn = magnitude of nth component of load 

- 

Y 

P 

P' 

P 
- 

prn 

R 

R 
Y 

'a 

% 

= concentrated  load  acting on mass of simple  oscillator  representing  beam  with  elastic  response 

= concentrated  load  acting on mass of simple  oscillator  representing  beam  with  plastic  response 

= "effective"  average  force  acting  during  time  from  zero  to  t 

= maximum  value of force  acting on structure 

= value of force  developed by spring  in  simple  oscillator 

= force  developed by spring in simple  oscillator at initial  (or  effective)  yielding 

= ratio of e r ro r s   i n  devised  and  assumed  acceleration 

Y 

= e r ro r   i n  bending moment  represented by neglecting all but fundamental  mode  in  response of simple 
beam  to  step  pulse of loading  with  infinite  duration 
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S- 
Y 

S =  
Y 

S 

T 

Tn 

TS 

t 

td 

tm 

tr 
U 

il 

ii 

V 

X 

x 

x 

X m 

xm 

'm 

x =  ave 

ave 

xave = 

x =  

Y 

Y 
- 

Y 

Y 

YC 

yb 

'b 

yb 

Ym 

- 

- - 

e r r o r  in  deflection  represented by neglecting all butfundamental  mode  in  response of simple  beam  to 
step  pulse of loading  with  infinite  duration 

e r r o r  in  deflection  represented by neglecting all but fundamental  mode  in  response of simple  beam  for 
impulsive  loading 

length  over which curvature  occurs  in  beam  deformed beyond i t s  yield  strength 

period of vibration of simple  oscillator 

natural  period of vibration  in nth mode 

pseudo  period of solution by numerical  integration 

time  variable 

effective  duration of positive  phase of loading or ground  displacement 

"duration" of impulse 

t ime of maximum  response of simple  oscillator 

rise time  or  time  from  zero  to  maximum of applied  force 

relative  displacement between mass  and  ground 

relative  velocity  between  mass  and  ground 

relative  acceleration  between  mass  and  ground 

spectrum  pseudo-velocity 

absolute  displacement of ground or  coordinate  measured  from  support of beam 

absolute  velocity of ground 

absolute  acceleration of support  or "ground" 

maximum  displacement of ground 

maximum  velocity of ground 

maximum  acceleration of ground 

average  displacement of ground 

average  velocity of ground 

average  acceleration of ground 

displacement of mass 

approximate  displacement of mass  

absolute  velocity of mass  

absolute  acceleration of mass 

correction  in  displacement  applied  in  solution of "plastic"  response of simple  oscillator 

deflection at center of beam  produced by static  load 

deflection at center of beam  produced by step  pulse of force  with  infinite  duration 

deflection at center of beam  produced by impulse 

maximum  displacement of simple  oscillator 
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y, = static  displacement  caused by load P 

yk = displacement of simple  oscillator  produced by the  supported  mass 

= deflection  corresponding  to  initial (or effective)  yielding of spring  in  simple  oscillator 

j3 = parameter  defining  variation of acceleration  with  time 

y = pseudo  damping  parameter  in  numerical  integration 

0 = product of natural  circular  frequency  and  time  interval 

p = "ductility  factor"  which is ratio of maximum  to  yield  deflection 

Q = pseudo  natural  circular  frequency  in  solution by numerical  integration 

w = natural  circular  frequency of vibration of simple  oscillator 
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NOTATION 

CHAPTER V-5 

A = spectral  value of acceleration  for  single-degree-of-freedom  system 

an = coefficient of ser ies  

D = spectral  value of displacement  for  single-degree-of-freedom  system 

E = modulus of elasticity of material 

g = acceleration of gravity 

i ,  j = subscripts  denoting  modes 

I = moment of inertia of section 

K = stiffness of part of structure;  subscripts  define  position in structure 

L = span 

L = Lagrangian  function 

M = mass of part of structure;  subscripts  define  position  in  structure 

Mx = moment  at  position x in beam 

n = mode  designation  or  general  position  designation (in structure) 

p = intensity of load on beam 

P = static  pressure  acting on structure 

P = peak  value of pressure  acting on structure 

R = resistance of structure 

R = resistance of structure  at  general  yielding 

t = time 

U = potential  (or  strain)  energy 

u(t) = deflection  response  for a single-degree-of-freedom  system  subject  to  ground  motion 

V = kinetic  energy 

V = spectral  value of velocity  for  single-degree-of-freedom  system 

w = weight of beam  per unit of length 

x = coordinate  defining  distance  from  support of beam 

y = absolute  deflection of mass;  subscripts  define  position  in  structure 

- 

Y 

= absolute  velocity of mass  

j i  = absolute  acceleration of mass  

ya = arbitrary  deflection  pattern 
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ym = computed  displacement 

Ym-1- - assumed  displacement 

ym = maximum  transient  displacement of structure 

LI = modal  quantity 

y = scale  factor  for  modal  quantities  (deflection,  velocity,  force,  etc.),  modal  excitation  factor 

AFn = force in  nth spring 

Ay, = deflection of nth spring 

(1 = ductility  ratio,  ratio of maximum  transient  displacement  to  displacement  at  general  yielding 

{ ,q, r = Cartesian  coordinates 

w = circular  natural  frequency of vibration 

- 



NOTATION 

CHAPTER V-6 

A C  

A 
g 

AS 

Ast 

b 

b '  

C 

d 

E 

e 

f 

fl: 

f r  

f b  
f 

h 
Y 

L 

La 

LS 

M 

MC 

MU 

M 
Y 

NU 

N 

P 
Y 

= core  area of column 

= gross   a r ea  of column 

= cross-sectional  area of tensile  reinforcement 

= total   area of longitudinal  reinforcement 

= width of member  or  of the  "compression  flange" 

= width of stem of a T-section 

= distance  from  neutral  axis  to  "extreme  fiber" 

= effective depth of member 

= modulus of elasticity 

= eccentricity of load 

= stress  at  "extreme  fiber" 

= ultimate  strength of concrete 

= modulus of rupture of concrete 

= yield  strength of spiral  reinforcement 

= yield stress  for  tensile  reinforcement 

= total  depth of member 

= moment of inertia of "transformed  section" 

= gross moment of inertia of a beam 

= dimensionless  parameter  defining  the  distance  between  the  centroid of the  internal  compressive  and 
tensile  forces 

= span of member 

= total  length of column 

= shorter  span of slab 

= moment at  mid-span 

= bending (or resisting)  moment  at  initial  cracking 

= bending (or resisting)  moment  at  ultimate  conditions 

= bending  (or  resisting)  moment  at  general  yielding 

= axial force on column at ultimate  conditions 

= axial  force on column  at  general  yielding 

= tensile  reinforcing  ratio 



p' = compressive  reinforcing  ratio  at  mid-span 

p1 = tensile  reinforcing  ratio  at  one  support 

p2 = tensile  reinforcing  ratio  at  another  support 

pa = average  value of tensile  reinforcing  ratio  over  supports 

pc = tensile  reinforcing  ratio  at  mid-span 

pg = gross  reinforcing  ratio 

pLc = tensile  reinforcing  ratio  parallel  to  longer  span of slab  at  (or  near)  mid-span 

PL e 
Pm = magnitude of dynamic pressure  acting on beam 

= tensile  reinforcing  ratio  parallel  to  longer  span of slab  at (or near)  the  support 

Pmax = maximum  value of tensile  reinforcing  ratio 

pmin = minimum  value of tensile  reinforcing  ratio 

ps = spiral  reinforcing  ratio 

psc = tensile  reinforcing  ratio  parallel  to  shorter  span of slab  at (or  near)  mid-span 

pse = tensile  reinforcing  ratio  parallel  to  shorter  span of slab  at (or near)  the  support 

pv = volumetric  reinforcing  ratio of web reinforcement 

R1 = resistance  at  initial  yielding in indeterminate  beam 

Rc = cracking  resistance of beam 

RU = ultimate  resistance of beam 

R = resistance of a beam  at  general  yielding for uniformly  distributed  loading (R is a pressure) 
Y Y 

Rys  flexure 
= resistance  at  general  yielding  and  at  ultimate  conditions  for  beam  subjected  to  combined  shear  and 

Vmax= maximum  shear in member 

y1 = deflection  at initial yielding  in  indeterminate  beam 

y2 = deflection  at  general  yielding in indeterminate  beam 

yE = deflection  at  mid-span 

yY 
= mid-span  deflection  at  yielding in indeterminate  beam 

y; = mid-span  deflection  at  yielding  in  simple  beam 

YYa 
= deflection  at  yielding i n  column  under  axial  load 

(Y = aspect  ratio  for a slab 

9 = factor  relating  strength of two-way slab  to  strength of one-way slab 

t = maximum  compressive  strain  at which crushing of the  concrete  begins 

t = strain  in  tensile  reinforcement  corresponding  to  initial  yielding 

ii = ratio of tensile  reinforcing  ratio  at  the  supports  to  that  at  mid-span 
Y 

p m  
6 = ratio of compressive  to  tensile  reinforcing  ratios 

= maximum  ductility  ratio 
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CHAPTER V- 1 

GENERAL LOADING  AND RESPONSE OF STRUCTURES 

V- 1.1 INTRODUCTION 

Explosion-generated  motion  propagating 
through  soil  or  rock m a y  be characterized  in  several 
ways. In the  earlier  parts of this book the nature of 
the  motion and the  factors which influence i ts  
strength  and  propagation in the  free  field  are  discus- 
sed. Most of the  manifestations of the  motion  have 
an  influence on an  underground  structure  embedded 
in  the  medium. Which of the  manifestations  predom- 
inate  in  the  behavior of the  structure  depends upon 
how the  properties of the  structure  differ  from  those 
of the  medium. The problem of determining  the  in- 
fluence on the  structure of the  ground motion in  the 
vicinity pf the  structure  introduces  the  concept of 
"structure-medium  interaction." 

A knowledge of the effects induced  in the  free 
field,  the  factors  influencing  these  effects,  the  struc- 
ture-medium  interaction,  and  the  factors  influencing 
interaction  is  implicit  in  the  study of behavior of 
underground  structures.  This  chapter  summarizes 
these  various  phenomena as they apply  to  under- 
ground  structures  in  general.  Behavior of specific 
structural  types  is  discussed  in  Chapters V-2 and 
v-3. 

As described in Par t  I11 many methods have 
been  used  to  measure  the  intensity and variation in 
time  and  space of the  free-field motion. The  char- 
acteristics of free-field motion are  important in the 
definition of the  nature of the  waves induced  in the 
medium  and  the  conditions which affect  the  behavior 
of a structure  located  in  the  medium. It is empha- 
sized  that,  for  each of the  parameters  discussed  be- 
low, the  magnitude,  direction, and the  variation with 
time  and  space of the  free-field  effects  should gen- 
erally  be known. 

Although the  behavior of a structure  may be 
influenced by other  factors  than  the  external  loading, 
the  outer  shell of a buried  structure  must  have  a 
strength  capable of resisting  the  forces  applied  to  it. 
Consequently, knowledge of the  contact  stresses 
acting on the  structure  is  required.  These  may 
often  differ  from  the  free-field  stresses, but never- 
theless  they  are  related  to  them. Hence the  stress 
intensities  in  the  free  field  are  important. 

For  open unlined cavities in rock  or  for  struc- 
t m e s  in  soil  extending  over  large  lengths  or  areas, 
the  free-field  strains  may  be  more  important  than 
the  stresses in determining  the  conditions of failure. 
Moreover,  the  distribution of strain  must  be known 

to  define  displacement.  For many situations  this 
distribution  can be inferred  from  the mode of s t ress  
wave propagation. 

In the  determination of the  behavior of equip- 
ment  mounted within a structure, knowledge of the 
absolute  motions of the  structure  is  required. In 
many  instances  the  effects on equipment, a s  well as 
on  component  parts of the  structure  itself,  can  be 
stated  in  terms of the  response  spectrum, which can 
often be described  adequately enough for  design  pur- 
poses  from only the  maximum  values of medium  dis- 
placement,  velocity,  and  acceleration. 

In the  consideration of the  desirable  depth of 
cover  over a structure, both for  structural  strength 
and  for  response of contained  equipment,  the  attenu- 
ation with depth and the  decay  with  distance of the 
various stress wave parameters  must be known.* 
For  example,  changes  in  displacement with hori- 
zontal or  vertical  distance  are  important  because  ef- 
fects  sometimes  vary  significantly with distance 
along a structure;  this  variation  can  cause  serious 
problems in a  large  structure. 

V-1.2 SOURCES OF DATA 

Although theories  and  experimental  evidence 
related  to  the  propagation of s t r e s s  waves in elastic 
homogeneous  materials  were  relatively  well known 
prior  to World War 11, only limited  inferences  could 
be  drawn  pertaining  to  the  behavior of protective 

*Thermal and nuclear  radiation  from  a  nuclear  ex- 
plosion a r e  not important  in a discussion of struc- 
tural  behavior  under  blast loading. Even for  com- 
pletely  exposed  structures, the short  duration of the 
intense  thermal wave renders  it  of little  significance 
in  causing  other than surface  damage.  Because of the 
insulation  provided by the  earth  cover,  thermal  radi- 
ation  has no effect on the  behavior of underground 
structures. Yet it  cannot  be  neglected a priori  in  the 
design of ventilation  systems;  this  subject  however  is 
not a  part of this book. Even though nuclear  radiation 
is intense,  it  generally  does not have  sufficient  dura- 
tion o r  sufficient  energy  to  cause  significant  changes 
in  structural  materials. Although it is not germane 
to  this book, the  effects of nuclear  radiation  must  be 
accounted  for  in  the  general  problem of designing  an 
underground  structure to insure  protection  from 
radiation of the  contents  or  inhabitants of a  buried 
structure.  This  requires  sufficient  cover  to  attenu- 
ate the  radiation  reaching  the  structure  to  tolerable 
levels. 
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structures  located in soil  and  rock.  Consequently it 
was  necessary  to conduct tests of buried  structures 
subjected  to  the  forces of both contact  and  remote 
explosions.  The  results of the  tests  involving high 
explosives  were  summarized by Christopherson 
(Ref .  V-1.1) in Great  Britain and by Lampson (Ref. 
V-1.2) in  this  country.  Results  obtained  in  these 
experiments of importance  to  this book were: 
( 1 )  Development of techniques  for  measuring  pres- 
sure in the  free  field  and  stress on structures (%e 
Part  111); (2) documentation of the means by which 
s t r e s s  waves  propagate  through  soil  and  subsequent 
analyses of these  phenomena  (See  Part IV); and 
( 3 )  determination of damage  criteria  for  buried 
structures.  Relative  to  these  damage  criteria,  it 
should be noted that  the  instruments of warfare  at  the 
time  differed in many respects  from  nuclear  weapons. 
For  example,  armor  piercing  projectiles and bombs 
were commonly  used  against  fortifications;  also 
delivery  systems  for  the  weapons  were  such  that  the 
total  energy  available in the  projectiles  and  bombs 
were  limited  to  a few tons of high explosive.  Conse- 
quently,  the  buried  structures  tested  were  represent- 
ative bf typical  reinforced  concrete  fortifications 
common  to  the era which were  designed  to  prevent 
penetration of and  spalling on interior  surfaces 
caused by armor  piercing  weapons.  To  provide  this 
protection  required  thick  structural  elements  and 
reinforcement  concentrated on the  interior  surfaces 
of the  structure. Yet because  this  reinforcement  was 
provided  mainly  to  prevent  spalling,  it  offered  rela- 
tively  limited  strength  to  the  members  for  resisting 
the  explosion  generated  stresses  from  remote  detona- 
tions. In fact  the  analysis of the  elements in these 
structures  indicates  that  the  amount of reinforce- 
ment  provided  was  significantly less than  the  per- 
centage  required  to  cause  the  ultimate  strength  to 
equal  the  cracking  strength. Although they  were 
adequate  to  protect  against  the  weapons in use at  the 
time,  the  fortifications  considered by Lampson  and 
Christopherson  proved  inadequate  for  resisting  the 
effects of nuclear  weapons.  This  resulted  primarily 
because of the many-fold increase in the  yield of 
nuclear  weapons with the  attendant  increase of posi- 
tive  phase  duration  and in area  subject to s t r e s s  in 
comparison  to  the  size of the  fortifications. 

Field tes ts  of protective  structures  are  impor- 
tant  for  many  reasons.  Paramount  among  these 
reasons are: (1) Knowledge of the  phenomena is not 
sufficient  to  allow  reliable  scaling  from  microscale 
laboratory  experiments; (2) it  is  difficult  to  simulate 
the  natural  conditions which prevail;  and (3) it   is  dif- 
ficult to simulate  the  loading  induced by a nuclear 
detonation.  This i s  not  to  say  that  laboratory  and 
theoretical  investigations a r e  of little  value; on the 
contrary  they are indispensable  and  must  always  ac- 
company field  experiments of any kind. Yet field 
data have been  most  useful  in  providing  checks  and 
Eontrols on the  theoretical  analyses.  Full-scale 
tes ts  should  never  be  considered  ends in themselves; 
science  is  advanced when a theory is  generated which 
explains  fully  the  empirical  observations. 

Although a wealth of data has  been  accumulated 
through  the  years of testing,  theoretical  development 
unfortunately  did  not  keep  pace with the  data  collec- 
tion in  many cases.  This  gap  is now being  closed, 
but  many of the  empirical  observations  require  ad- 
ditional  explanation. In the  sections which  follow the 
inferences which may  be  drawn  from  the  field  tests 
are  discussed  whenever they a r e  pertinent. 

For  practical   reasons  tests on underground 
structures  made in a laboratory  must  normally  be 
geometrically  scaled. Also to  gain  fundamental 
understanding of a problem  individual  parts of that 
problem  must  be  studied  rather  than  the  entire  prob- 
lem. Even though simulation,  or  even  approximate 
simulation, of physical  conditions  may  be  impossible, 
much  can be learned  at  least  qualitatively  about  any 
complex  problem  through  scaled  tests.  For  example 
the properties of materials  in  the  environment as- 
sociated  with  the  over-all  problem  can  be  studied in 
detail. Following such a study,  investigation of the 
behavior of individual  structural  elements of the 
same  environment  is  desirable.  Additional  steps 
follow until  the  entire  problem  is  understood. 

For  the  situation  considered  in  this  chapter  the 
major  characteristic of the  environment  influencing 
the  behavior of structural  elements is the  variation 
of loading  with  time. Many tests have been  made on 
various  materials  wherein  the  effect of strain rate 
on the  mechanical  properties of structural  materials 
has been  studied. Although these  effects  are now 
reasonably  well  documented, a theory  which  com- 
pletely  explains  the  observations is as yet  lacking. 
Studies in this area a r e  continuing.  These  studies 
are  summarized  in  Section V- 1.6. 

Studies  also  are  continuing of the  behavior of 
individual  structural  elements  subjected  to  dynamic 
loads.  For  the  types of construction which have  been 
investigated  it  appears  that  static  theories are ap- 
propriate  in  the  definition of the  strength  provided 
that  the  governing  stresses of the  component  mater- 
ials are augmented  to  reflect  the  effect of strain  rate. 
Yet in some areas, notably  diagonal  tension  in  rein- 
forced  concrete, reliable static  theories  are not 
available.  Studies of the  static  and  dynamic  behavior 
of individual  structural  elements are continuing. 
The  results of some of these  studies are presented 
in Chapter V-6. 

A problem which only  relatively  recently  has 
been  studied  experimentally  involves  the  interaction 
of soil  and  structure.  This  is  a  most  complex  prob- 
lem;  experimental  studies are hampered by the  lack 
of equipment  to  apply  transient  loads  to  the  relatively 
large  samples of soil required  and by the  difficulty  in 
measuring  the  states of stress and  deformation in the 
soil.  Techniques a r e  being  developed  currently  and 
testing in this area i s  proceeding a t  U. S. Navy Civil 
Engineering  Laboratory (NCEL), U. S. Army  Water- 
ways  Ekperiment  Station (WES), U. s. Air  Force, 
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Eric H. Wang Shock  Tube Laboratory, MIT Soils Lab- 
oratory,  Armour  Research Foundation,  and Univer- 
sity of Illinois,  Department of Civil  Engineering, 
among  others. 

Another  problem which i s  difficult  to  study  ex- 
perimentally  involves  the  assessment of shock  vul- 
nerability of equipment. Although shake  and  spin 
tables  and  impact  machines have been  available  for 
testing  various  components,  the  inputs  imparted by 
these  machines  frequently do  not simulate  the  inputs 
associated with stress  waves  produced by an  explo- 
sion  in  or  over  soil  or rock. This  area of investiga- 
tion  also  is  receiving  much  attention. 

Development of a unified theory of the  behavior 
of buried  structures has been  impeded by a lack of 
understanding of the  precise phenomena  involved. 
Although the  general  phenomena which should influ- 
ence  this  behavior  have  been  understood  reasonably 
well  for  some  time,  the  manner  in which these  phe- 
nomena a r e  coupled and bounded has not been  clear. 
Consequently,  analyses have evolved as the  data  from 
field  and  laboratory  experiments  became  available. 
In most  cases  these  experiments  were  designed  to 
investigate  the  influence of parameters which a par- 
ticular  theory  indicated  should be of importance. 

Because of the  extreme  complexity of the  gen- 
eral  problem,  the  evolution of theoretical  solutions 
has occurred  rather  slowly.  Individual  idealized 
problems  have  been  solved,  and  in  general  the  cor- 
relation  between  the  results of these  solutions  and 
experience  depends upon the  degree  to which  the 
idealizations  match  the  physical  situation.  Fewer 
idealizations,  and  consequently  better  correlations, 
should  be  expected as ultra-high-speed  digital  com- 
puters  become  more  generally  available. 

V-1.3 INFLUENCE O F  STRESS WAVE ON TYPE  OF 
RESPONSE 

In the earlier par ts  of this book are presented 
detailed  discussions of the  manner  in which the 
stress wave forms  and  propagates.  Therefore, only 
the  aspects of these  phenomena  that are pertinent  to 
the  behavior of buried  structures  are  reviewed  in  this 
section.  For  example,  the  relative  strength of the 
airblast-  and  directly-induced stress waves  influ- 
ences  significantly  the  response of the  structure. 
Also  the  change in shape of the  stress wave as it 
propagates  through  the  medium  influences  structural 
response. 

As discussed  in Part I, near  the point of det- 
onation of an  underground  or  surface  burst  the  medi- 
um may be treated as if  it were a fluid  under  the 
action of the  intense  stress  and  velocity  fields. 
Structures  can only survive  in  the  hydrodynamic 
region if they  can  withstand  the  major  rigid body dis- 
placement  caused by the  intense  stresses in this 
region. 

Changes  in air shock  and  ground  motion  para- 
meters  with  time  and  distance  depend  implicitly on 
the  type,  size,  and  point of burst of a weapon. Much 
of the  data  from  field  tests of import  to  the  current 
discussion  has  been  obtained  from  detonations of 
high explosives.  Several  conditions  accompanying a 
high  explosive  detonation  differ  from  those  involved 
in a nuclear  detonation.  For  this  discussion,  these 
differences are assumed  to  be  defined uniquely by the 
energy  equivalence  factors of the  type  discussed  in 
detail  in R e f .  V-1.3. 

Structural  response  is a function of the  ratio of 
the  effective  duration of the  s t ress  wave to  the  appro- 
priate  natural  period of vibration  for  the  structural 
element on which the s t r e s s  is acting. Although the 
effective  duration of the s t r e s s  wave i s  influenced by 
many parameters,  the  primary  influence  is a func- 
tion of the  size of the weapon as measured by the 
absolute  energy  yield.  Despite  the  fact  that  the ef- 
fect of the  ratio of duration  to  natural  period, in 
many instances,  can be expressed  as a continuous 
function (Ref. V-1.4), the  physical  effects  can be 
understood  more  clearly by recognizing  three  cases; 
viz.,  shock  inputs which a r e  (1) nearly  impulsive, 
(2) nearly  infinite in duration  and  (3)  intermediate 
between  impulsive  and  infinitely long. 

The  location of the point of detonation  relative 
to the  surface of the  ground  influences  the  amount of 
energy  which  directly  enters  the  medium as con- 
trasted  to  the  amount of energy  released  into  the air 
as discussed  in  the  introduction  and  in  Part IV. This 
division of energy  can  be  important  to  the  behavior of 
a structure  because  it  defines  the  relative  intensity 
of the  airblast-  and  directly-induced  motion which 
reaches  the  vicinity of the  structure. 

V- 1.3.1 Airblast-Induced Ground Motion 

Theoretical  Developments. When airblast- 
induced  motion  predominates  in  causing  damage  to 
underground  structures, it is important  to  recognize 
the  changes which occur as the wave moves  through 
the medium. It is especially  important  to  distinguish 
between  the changes  resulting  from  the wave passing 
through  the  medium  and  those  resulting  from  the 
interaction  between  the  medium  and  the  structure. 

To  facilitate  analysis,  changes in stress-wave 
intensity  resulting  from  propagation  through  the 
medium  can  be  considered a result of two separate 
causes.  The  first,  and  major  one, is spatial  disper- 
sion;  the  second i s  the  complex  dissipation  resulting 
from  nonlinear  behavior,  damping,  and  inertial  ef- 
fects  in  the  medium.  For  airblast-induced  ground 
motion, effects of spatial  dispersion  can  be  estimated 
if it  is  recognized  that  the  airblast  produced by a 
large  nuclear  detonation  loads a large  annular area 
surrounding  the  burst point. The radius of the  air-  
shock  front  and of any  contour of constant  overpres- 
sure behind the  shock  front is so large  compared  to 
the  practical  depths of interest  that  these  fronts  may 
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be approximated by straight  lines  over a relatively 
large  distance  transverse  to  the  direction of shock 
propagation. By use of this  assumption a numerical 
solution  for  the  stress  field  taking  into  account  dis- 
persal  was  generated by integration of the  static 
(Boussinesq)  solution for stresses  produced  in  an 
infinite,  elastic,  homogeneous  half-space (Ref .  
V-1.5). The  mass of the  medium  cannot be included 
directly  in  this  treatment  because  the  static  solution 
inherently  disregards  inertial  effects.  Thus, the re-  
sults in Ref. v-1 .5  are  consistent with an  assumption 
that  the s t ress  waves  propagating  from  all  points on 
the  ground  surface  reach  the point  in the  medium  be- 
low~ the  surface  instantaneously. A graphical  solution 
of the  same  problem (Ref. V-1.6),  but considering  the 
contours of constant  overpressure  to be a r c s  of c i r -  
cles,  was  based on charts  developed  in R e f .  V-1.7 and 
gives  results  almost  identical  to  those in R e f .  V-1.5. 
The  theoretical  attenuation of vertical  and  horizontal 
s t r e s s  with depth i s  shown in  Figs. V-1.1 and V-1.2 
which a r e  taken  directly  from Ref. V-1.5. Typical 
shapes of the  stress-time  curves  at  selected  depths 
a l so   a re  shown in Figs. V-1.3 and V-1.4. It is im- 
portant  to  recognize both the  decrease  in  stresses 
and  the  increase in rise  time with depth in the  latter 
figures. Both of these  changes  in  the  stress wave 
can  be  very  significant  to  the  response of a structure. 

MAXIMUM STRESS, PSD 

FIG. X-1.1 MAXIMUM AIRBLAST-INDUCED STRESS VS DEPTH 
FOR 100-PSI IDEAL OVERPRESSURE FROM SURFACE 
BURST 

Figures V-1.2 and V-1.4 a r e  based on 
Poisson's  ratio for the  medium of 0.50; vertical 
stresses (Figs. V-1.1 and V-1.3) are independent of 
Poisson's  ratio. Also the  stresses computed  from 
static  theory  are  independent of the  modulus of elas- 
ticity. None of the s t r e s s  components  includes  the 
effect of the  weight of soil  above  the  horizontal  plane 
at  which the  s t resses   are  computed. As noted in  the 
captions of the  figures  all  computations  were  made 
for  an  ideal  waveform of the  surface  overpressure. 
The  scaling  referred  to  in  Figs. V-1.1 and V-1.2 
illustrates how the  data  presented  can be used  to 
obtain stresses  for  nuclear  devices of different 
yield.  This  scaling  is  based on the  following 
relationship: 

" z1 - ("1 - 
=2 w2 

(V- 1.1) 

where z1 = depth  for a given  overpressure  at 
which a  given stress  occurs  from a 
detonation of yield W1 

z2 = depth  for  a  given  overpressure  at 
which a  given stress  occurs  from a 
detonation of yield W2. 

MAXIMUM STRESS, psn 

0 

FIG. P-1.2 MAXIMUM AIRBLAST-INDUCED STRESS VS DEPTH 
FOR 200-PSI IDEAL OVERPRESSURE FROM SURFACE 
BURST 
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FIG. Y-1.3 VERTICAL  AIRBLAST-INDUCED STRESS VS TIME, 
EFFECT  OF  SPATIAL DISPERSION, 40-KT SURFACE 
BURST, 100-PSI IDEAL OVERPRESSURE WAVEFORM 

Figures V-1.3 and V-1.4 illustrate  the  change 
in shape of the  stress wave  with depth. A distinct 
reduction in radial   s t ress   a t  all depths is apparent  at 
a time  approximately  corresponding  to  the  time of 
arr ival  of the  surface  overpressure  at  the  vertical 
plane  considered.  This  results  from  the  fact  that 
purely  vertical  stress  at a point  has a smaller  in- 
fluence on horizontal   stress  at   the  same point than 
does a vertical   stress applied a t  a  point  removed 
from  the  point  in  question. A manifestation of this 
relative  significance of the  influence of vertical 
s t r e s s  on horizontal  (or  radial)  stress  also  is  appar- 
ent in the  earlier  arrival of the  horizontal s t r e s s  
compared  to  that of the  vertical   stress and the  in- 
crease in rise  time of radial   stress with depth. In 
both figures,  the  earlier  arrival of horizontal s t r e s s  
at  greater  depths  than  at  smaller  depths  results  from 
the  implicit  assumption  that  stress  waves  propagating 
from  all  points on the  contour of constant  overpres- 
sure  reach  the  point  instantaneously. 

" - IO0 I t  

TIME, W E  

To eliminate  partially  the  effect of this  last as- 
sumption,  the  transit  time  from  various  points on the 
surface,  corresponding  to  points on each  contour of 
constant  overpressure, to the  point a t  which the  ver- 
tical  stress  in  the  medium  was  computed,  was  in- 
cluded  in  the  graphical  solutions of the  Boussinesq 
equations (Ref. V- 1.6). Figure V-  1.5 presents  the  re- 
sults  obtained  at a range  corresponding  to ZOO-psi 
overpressure  produced by a  5-mt  surface  burst 
(4320 ft). The seismic  velocity of the  medium 
(2000 ft/sec)  considered  in  this  figure  is  representa- 
tive of many soils.  Comparison of the  peak  values  in 
Fig. V-1.5 with  those in Fig. V-1.1 illustrates  that 
the  effect on the  peak  vertical  stress of the  finite 
seismic  velocity  is  less  than 10% for  the  depths 
considered. 

RANGE-4120 F T  

0 

FIG. E-1.5 PRESSURE VARIATION WITH TIME AT  DEPTHS 

TO BE 2000 F T  "SEC 
INDICATED: SEISMIC VELOCITY  IN SOIL TAKEN 

Also  in R e f .  V-1.6 the  radial  stress  was  com- 
puted  for a Poisson's  ratio  equal  to 0.15. The r e -  
sults of this  computation are compared with similar 
resul ts  for Poisson's  ratio of 0.50 in Fig. V-1.6. 

Recognizing  that  the  airblast  produced by a 
large  yield  nuclear  device  loads  an  annular  ring with 
center  at  the  point of detonation  nearly  uniformly 
circumferentially  and  radially  over  distances of 
several  tens of feet  suggests  that a condition of one- 
dimensional  strain  might  be  nearly  approached in the 
medium  loaded by the  airblast. If additionally  the 
lateral   stresses  associated with a condition of one- 
dimensional  strain  are  neglected,  the  behavior of the 
soil  under  the  action of the  airblast  can be studied 
qualitatively by considering a one-dimensional rod. 

FIG.  P-1.4  RADIAL  AIRBLAST-INDUCED STRESS VS TIME, 
EFFECT  OF  SPATIAL DISPERSION, 40-KT SURFACE 
BURST, 100-PSI IDEAL OVERPRESSURE WAVEFORM 
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HORIZONTAL STRESS, PSI 

FIG P-1.6 CHANGE IN MAXIMUM RADIAL STRESS WITH DEPTH 
NEGLECTING  TRANSIT  TIME, 5 " T  SURFACE  BURST 

Recent  theoretical  work  in  studying  specifically 
the  propagation of waves  in  "rods" of soil  appears  in 
Refs. V-1.5 and V-1.8. Both of these  references,  in 
the  evaluation of results,  employ  experimental  data 
on the  dynamic  properties of soi ls  (Ref. V-1.9 and 
associated reports). These  experiments are de- 
scribed  in  Part I1 of this book. 

In Ref. V-1.5 a viscoelastic  model  was  postu- 
lated which deviates  only  slightly  from a standard 
linear  model  in  that a mass   i s  added  between  the 
spring  and  the  parallel  combination of dashpot  and 
spring  common  to  the  standard  linear  model (Fig. 
V-1.7). This division of mass  was included pr i -  

marily  for  ease  in  calculations.  The  springs  in  the 
model  were  not  restricted  to  elastic  action,  and  com- 
putations  were  made  for  nonlinear  spring  forces. A 
detailed  study of the  effects of varying  each of the 
parameters  was  carried  out to study  the  character- 
istics of the  model  and  the  stability of the  numerical 
integration. Also experimentally  determined  pa- 
rameters  (Ref.  V - l .  9) were  used,  and  except for the 
initial  portion,  the  model  solution  checked  the  exper- 
imental  stress-time  curves well. The  static  stress- 
strain  curve  used  in  the  solutions  to  compare with 
the  experimental  results  is shown in Fig. V-1.8. 
Actual  comparisons  of  theoretical  and  measured  re- 
sults  are  portrayed i n  Figs. v - 1 . 9  through v-1.12.  
The  parameters  used  in  the  computations  are  sum- 
marized  in  the  insert  for  each  figure.  The  value vo 
is the  particle  velocity of the  impacted  end of the 
specimen.  The  lack of correlation  in  the  initial  part 
of the  stress-time  curves,  especially  at  the  impact 
end  apparent in Figs. V-2.9 through V-1.12, was  at- 
tributed  to  the  effects of lateral  inertia which were 
neglected in the  model. The effects of lateral  inertia 
theoretically  should  have  been  pronounced  in  the  ex- 

- - - TRILINEAR APPROXIMATION 

-0 I 2 3 4 

AXIAL STRAIN,  Y 

FIG. P-1.8 STATIC STRESS-STRAIN CURVE FOR OTTAWA  SAND 
(REF. P-1.9) 

[a) E L A S T I C  MODEL 

(b) STANDARD  LINEAR  MODEL 

C C C I I C  I 
( c )  NEWMARK MODEL 

FIG. P-1.7 COMPARISON OF  CERTAIN MODELS  USED TO  STUDY  STRESS  WAVE PROPAGATION  IN  ONE- DIMENSIONAL RODS 
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FIG. P-1.9 STRESS VS TIME FOR 20-IN. OTTAWA  SAND 
SPECIMEN, V, = 15 IN/SEC 

- - - THEORETICAL 

TIME, mrac 

TIME. m u c  

FIG. P-1.10 STRESS VS TIME FOR 20-IN. OTTAWA SAND 
SPECIMEN, V, = 45 IN/SEC 

perimental  results  because of the  relatively  small 
length-diameter  ratio of the  specimens.  (See  discus- 
sion by Whitman in R e f .  V-1.8.) 

Parkin (Ref. V-1.8) agrees  that  the  effect of 
lateral inertia  should  be  pronounced for the  experi- 
mental data, but he presents a different  analysis 
which neglects  lateral  inertia. In his  theory  Parkin 

TIME, mroc 

FIG. Y-1.11 STRESS VS TIME FOR 20-IN. OTTAWA SAND 
SPECIMEN, V, = 60 IN/SEC 

approximates  an  experimental  stress-strain  curve 
for Ottawa sand by either a portion of an  ell ipse or 
by two straight  lines.  Additionally  it is assumed that 
the  stress-strain  relation for the  sand  depends upon 
the  strain  rate induced. By the  method of character- 
istics several  solutions  were  obtained  and  with the 
proper  choice of parameters  the  experimental re- 
sults  in Ref. v-1 .9  are  reproduced  closely by this 
model. Of particular  importance is the fact  that 
Parkin's  solution  also  predicts  the  large  initial  am- 
plification of stress  observed  in  the  experiments,  de- 
spite  the  neglect of lateral inertia in his  model. A 
comparison of Parkin's  results  with  those by Smith 
and  Newmark  and the experimental  curves  is shown 
in Fig. V-1.11. A complete  curve  from Ref. V- 1.8 is 
shown  in Fig. V-1.13. 

Thus, Parkin's  solution  reproduces  the  entire 
curve  obtained  in  the  laboratory  while  the  solution 
presented  in Ref.  V- 1.5 does  not  predict  reliably  the 
initial  portion of these  curves  especially  at  the  im- 
pacted end. At the  moment  the  validity of either of 
the  solutions  cannot be determined. Common to  the 
theories is the  fact  that both rely on experimentally 
determined  "constants"  and both require  that  part of 
the  input  data  be  inferred on the  basis of intuition 
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FIG. Y-1.12 STRESS VS TIME FOR 20-IN.  OTTAWA SAND 
SPECIMEN, V, 90 IN SEC 

since  some of the  required  data  do not lend  them- 
selves  easily  to  direct  measurement. For example, 
both theories  require  the knowledge of s t ress-s t ra in  
characteristics:  for  the  Newmark  model ( R e f .  V-1.5) 
the  damping  characteristics  must be inferred:  and 
for  Parkin's  approach (Ref. V-1.8) the  mass  and 
stiffness of a gage placed  over  the  end of the  labora- 
tory  specimen had to  be  inferred.  The  inferences in 
both cases  appear  quite  realistic, and  they a r e  doc- 
umented by detailed  analyses. 

It is suggested  that  the two solutions  really may 
be nearly  the  same in producing  qualitative  measures 
of the  behavior of the  Ottawa  sand  tested. In the 
Newmark  model  the  strain-rate  effect i s  included 
implicitly by the  inclusion of Newtonian dashpots; 
Parkin's  development on the  other hand utilizes  an 
algebraic  function  expressing  the  strain-rate  effect 
in terms of the  difference  between  the  applied  stress 
and  the  static  stress-strain  characteristics  at a par- 
ticular  strain. The lumped  mass-spring  model  pre- 
sumably could be adjusted  to  approximate  the  func- 
tion assumed  to  represent  the  strain-rate  effect. 
Also  it  should  be  recognized  that a large  number of 
masses  is   required to  obtain a stable  solution  for  a 
step-stress  pulse  applied  to a lumped mass-spring 
model.  This is caused by the  I'ery high frequencies 
implied by a s tep function:  the  model  must be cap- 
able of compatible  frequencies  to  obtain a solution. 
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Consequently in Ref. V-1.5 a relatively long finite 
rise  time  was  assumed  for  the  pressure  pulse, an 
expediency  required by the  capacity of the  digital 
computer  used  in  the  solution. A s imilar  expediency 
was not required  in  the  approach by Parkin  since 
his  solution  was  based on the  method of character- 
istics  wherein  the  properties of the  pressure  pulse 
a r e  not critical in limiting  the  results. 

Another  one-dimensional  analysis  should  be 
mentioned (Ref. V-1.10). In this  development an un- 
damped  homogeneous  maierial  was  assumed  and bi- 
linear  stress-strain  relations  were  considered. A 
solution  was  generated by the  method of character- 
istics.  Vertical  stress  and  particle  velocity  at 
selected  depths  are  derived  in  this  procedure. In 
general  an  input of 184,000 psi  surface  overpressure 
consistent  with  ranges  very  near  the point of detona- 
tion  was  specifically  considered in the  study. The 
results  indicate a maximum  vertical  stress of 16,500 
psi  at a depth of 500 ft and  10,700  psi a t  700 it  for a 
plastic-elastic  stress-strain  curve of the  type shown 
in Fig. V-1.14. The  decay of the s t r e s s  with time for 
depths below the  surface  is  much  smaller  than  that of 
the  overpressure. 

Near  the  surface of the  ground  relatively  large 
rotations of a small  structure o r  of portions of a 
large  structure  can  occur  under  blast loading. It 
would appear  that  these  rotations  are  primarily  a  re- 
sult of Rayleigh wave effects. For most  soils  a 
Rayleigh  wave  probably  cannot  develop fully because 
it propagates  with a velocity of approximately  one- 
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half that of the  dilatational wave, and  this  velocity is 
normally  significantly  less  than  the  velocity of prop- 
agation in a i r   for  the pressures  of interest.  For  ex- 
ample, if a soil  exhibits a dilatational wave velocity 
of 2000 ft/sec,  the  Rayleigh wave velocity would be 
approximately 1000 ft/sec. Since the  air-shock  vel- 
ocity is   greater than 1100 ft/sec  for  all  positive 
pressures  the  air-shock wave would always  outrun 
the Rayleigh  wave generated by the  air-shock, Con- 
sequently  the  surface  overpressure  interferes with 
the  development of the  Rayleigh wave. However, in 
some unusual  cases, when the  shock  velocity  in  air is 
nearly  coincident with the  velocity of the  Rayleigh 
wave,  the  amplitude of these  waves  can  reach  large 
values  since  the  airblast would constantly  feed  energy 
into  the  Rayleigh wave. A  detailed  discussion of 
these  effects is presented  in Ref. V-1.11, but the 
analysis  therein  is  more  qualitative  than  quantitative. 

Normally for soils  the  effects of Rayleigh 
waves a r e  limited  to  regions  near  the  surface be- 
cause  the  displacements  associated with these  waves 
decay in proportion  to e-fY where  e  is  the  base of 
natural  logarithms (2 .'718...); y i s  depth  below the 
surface;  and f i s  a  function of the wave length X and 
Poisson's  ratio v (For I' = 1/2, f = 1/X and  for v = 
1/4, f E 1/0.84X). Thus,  for  depths  corresponding  to 
2 wave lengths  (Rayleigh  wave)  the  displacements 
corresponding  to  the  Rayleigh wave would be  approx- 
imately  one-eighth of the  surface  displacements. 

Empirical  Results.  Laboratory  investigations 
of the  propagation of stress  waves  through  soil  were 
mentioned in the  preceding  section. Also they a r e  
discussed  in  detail in Par t  I1 of this book. 

Much significant  information on the  propaga- 
tion of stress  waves  through  soil  has  been  obtained 
in field  tests.  Also  because  the  gages  used  to  meas- 
ure  the  stress  intensity in the  soil  actually  are  mini- 
ature  structures,  these  data  also  pertain  to  the  prob- 
lem of structure-soil  interaction.  However, only 

stress  propagation  will be discussed  here;  inter- 
action  is  discussed in Chapter 2. 

Continuing investigations of s t r e s s  propagation 
have  been  conducted by Sandia  Corporation  (Ref. 
V-1.12). Also a minor  number of correlative  meas- 
urements  were  obtained by the  University of Illinois 
on Operation Upshot-Knothole (Ref. V-1.13). A dif- 
ferent  system of measuring  devices  (in  the  sense 
that a s t r e s s  gage is a  miniature  structure, a small 
structure is a s t r e s s  gage)  were  employed by the 
University of Illinois in Operation  Plumbbob  (Ref. 
V-1.14) to measure  attenuation of airblast-induced 
s t r e s s  with depth. On Operation  Plumbbob,  Sandia 
Corporation  (Ref. V-1.15) and Stanford  Research 
Institute  (Ref. V-1.16) measured  attenuation of 
various  ground  motion  parameters  to  greater  depths 
than had previously  been  investigated. 

All of these  investigations  indicate a significant 
attenuation of airblast-induced  motion  with  depth  in 
dry-granular  soils.  Curves of stress  and  time  at 
various  depths  are shown in  Fig. V-1.15 which is 
copied  from  Ref. V-1.13. Although the  waveform 
for  the  overpressure  was not ideal, it i s  significant 
to  note  the  decrease in nlaximum stress  and  the  in- 
crease in rise  t ime with depth  inthis  figure.  Stresses 
produced by overpressures  with  ideal  waveforms 
exhibit  similar  effects as shown in  Part XV of this 
book. These  phenomena a r e  qualitatively in agree- 
ment with the  results of the  Boussinesq  solution 
discussed  in  the  preceding  section. 

Stress  At Surface, 
Goge 3.8 M -El 

'5 Q 5+ Stress  At 4 f t  Depth, 
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Stress  At 8 f t  Depth, 

450 250 350 250 
- 1  

Stress At 12 11. Depth, 
Gage 3.6M-E5 -c 2 350 - 450 
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FIG.  P-1.15  VERTICAL STRESSES IN FREE  EARTH FROM 14.9-KT 
DETONATION 
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Where  acceleration,  velocity,  and  displace- 
ment have  been  measured  in  addition  to  stress, 
reasonable  correlation  among  these  measurements 
can  be  obtained  (Ref. V- 1.17) by considering  an 
elastic  rod of soil which is much simpler  than  the 
models  assumed  in  Refs. V-1.5 and V-1.8. For an 
elastic  rod,  the  particle  velocity v can  be  expressed 
(Ref, V-1.18) in te rms  of the s t r e s s  u or strain E 
(which  need not be  elastic) by the  following  simple 
relation  with  modulus of elasticity  E  and  seismic 
velocity c: 

o V o r v = c c  (V-l*2) 

and  particle  acceleration a by: 

a = c  - 
OY 

2 8 €  (V-1.3) 

where y is a space  coordinate  measured  vertically 
from  the  surface.  Displacement  can  be  estimated, 
if reflections  from  underlying layers a r e  negligible, 
by integrating  the  strain in the soil from  an  infinite 
depth up to  the  surface.  The  estimates  based on a 
simple  elastic rod do not precisely  represent  the 
measured  quantities, but with use of measured 
seismic  profiles  and  measured  stress-strain  prop- 
er t ies  including  strain  rate  effects  consistent with 
the  measured  seismic  velocities  reasonable  cor- 
relation is obtained.  (See P a r t  IV and  Ref. V-1.17.) 
The  ability  to  predict  airblast-induced  ground 
motions is important in providing  the input used  to 
assess  the  damage  to  equipment mounted in a 
structure. 

Another  important  observation  gained  from  the 
field  measurements is that  the  soil  appears  to  ap- 
proach a condition of one-dimensional  strain  under 
airblast  loading. At least  the  ratio of measured 
horizontal  to  vertical  stress  in  the  soil in Ref. 
V-1.12 can  be  consistent with that  predicted  assum- 
ing a condition of unidimensional  strain  for  reason- 
able  dynamic  values of Poisson's  ratio.  This  ratio 
can  be  expressed  theoretically by the  following, with 
oh and q, being  horizontal  and  vertical  stress,  re- 
spectively,  and v Poisson's  ratio. 

(V-1.4) 

This  ratio of pressures  is important in determining 
the  arching  forces which might  develop  above  a 
structure  and  the  forces  acting on vertical  elements 
of the  structure. 

V-1.3.2 Directly-Induced  Ground Motion 

Theoretical  Developments.  Probably  the 
earliest  development of the  problem of s t r e s s  waves 
propagating  through a nonlinear  soil  medium was 
carr ied out by Lampson  (Ref. V-1.19). In this  study 
the  changes in the wave caused by the  curvature of 

the  stress-strain  curve  were  investigated.  Also  the 
spherical  dispersion of the wave as it  propagated 
outward  from  the  center of detonation  was  studied. 
For  the  concave downward stress-strain  curve as- 
sumed  (Fig. V-l.16), Lampson  proved  that  the  rise- 
time of the  radial   stress  in  the medium  must  in- 
crease with distance  measured  from  the  center of 
the  burst.  Also  he  showed  that  the  peak  magnitude of 
radial   stress  must  decrease in proportion  to  the 
reciprocal of the  distance  traversed.  Finally  from 
the  principle of conservation of momentum,  it  was 
shown that  the  duration of the  radial  compressive 
stress  must  increase with distance  traversed.  These 
conclusions  were in qualitative  agreement with the 
experimental  data  obtained in the  tests  conducted as 
part of the  study. 

From  considerations of dimensional  similitude 
scaling  laws  also  were  developed in Ref. V-1.19. 
With minor  modification,  these  laws  continue  to  be 
used;  their  present  form i s  given  in Par t  N of this 
book. 

A spherical wave in a homogeneous  infinite 
elastic  medium  was  studied by Sharpe  (Ref. V-1.20). 
These  studies  are  generally  qualitative, but they 
show that  the  waves  disperse  in  direct  proportion  to 
the  reciprocal of the  radius  measured  from  the  point 
of the  disturbance. 

Empirical  Results. Although laboratory  ex- 
periments  have  been  conducted on the  problem of 
waves  propagating in solid  media  these  studies  have 
been  somewhat  limited.  Reference V-1.21 summa- 
r izes  many of these  studies.  Field  tests  have  pro- 
vided a wealth of data, but most of these  data  are 
difficult  to  interpret  since  the  airblast-induced 
ground  motion is  superimposed on the  directly- 
induced  ground  motion.  This, of course, is not true 
for  the  completely  contained  bursts.  The  contained 
bursts have occurred  in  rock.  The  writers are not 
aware of an  instrumented  detonation in soil which has 
produced a deep  camouflet  where  the  airblast- 
induced effects would mainly  be  eliminated. 

: 
STRAIN 

FIG. P-1.16 CONCAVE DOWNWARD STRESSSTRAIN 
CHARACTERISTIC OF MEDIW 
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The  inability  to  separate  clearly  the  airblast- 
induced  shock  from  the  directly-induced  effects  has 
hampered  analysis of the  data.  However,  significant 
conclusions  can  be  drawn  from  them  insofar as 
structural  behavior is concerned.  These  conclusions 
are detailed in the  following  chapter.  Thus, only the 
sources of the  data  will  be  mentioned  here. 

The  investigations by Christopherson  (Ref. 
V-1 .1 )  and  Lampson  (Ref, V-1.2)  already  have  been 
mentioned.  These involved small  detonations  com- 
pared with the  yield of a nuclear  detonation.  Further- 
more,  the  detonations  occurred  at  scaled  depths of 
burial which generally would be  unattainable  for 
large  yield  nuclear  weapons,  except  perhaps  for 
cases  of sabotage.  Similar  scaled  depths  were  used 
in the  Underground  Explosion Tests  (Ref. V-1 .22)  
and  for many of the  tests in Project Mole (Ref, 
V-1 .23) .  Yet important  inferences  can  be  drawn 
from  these  data  provided  that: (1) An energy  equiv- 
alence  may  be  specified  to  allow  converting  from 
TNT to  nuclear  conditions;  and (2) a conversion  may 
be  defined which relates  the  effects of a burst  deeply 
buried  to  one  at  or  near  the  surface. On the  basis 
of the  craters  formed,  energy  equivalences  have 
been  defined  (Ref. V -   1 . 3 ) .  These  equivalences  can 
vary  markedly  depending on the  position of burst 
relative  to  the  ground  surface.  Nuclear  detonations 
on the  surface of rock   a re  of the  order of 1% effec- 
tive as compared  to  a  buried  TNT  charge  (Ref. 
V-1 .17) .  On the  other hand nuclear  detonations on 
the  surface of soi l   are  somewhat  more  effective 
compared  with a buried  TNT  charge  (Ref. V-1.17) .  
The  large  difference  between  soil  and  rock  possibly 
can  be  attributed  to  the  competency of the  rock in 
shear  providing a much higher  degree of coupling 
for  the  buried  charge. 

V - 1 . 3 . 3  Importance of Type of Stress  Wave 
in Causine  Structural  Damage 

Consideration of the  effects of airblast-  and 
directly-induced  effects  can  become  tedious, but 
when the  difference  between  the  seismic  velocity of 
the  medium  and  the  sonic  velocity  in a i r  is rela- 
tively  large  the  analysis is straightforward. When 
these  velocities  are  nearly  matched,  the  problem 
becomes  especially  nebulous.  The  effects  produced 
by airblast  and  directly  through  the  medium  must  be 
considered in conjunction with one  another in such 
cases. 

Because of the  dependence of the  character of 
the  stress wave  on the  seismic  velocity in the  medi- 
um  to  the  shock  velocity in air, the  position of a 
structure  relative  to  the  surface as well as to  the 
point of burst is important. A structure  near  the 
surface of soil  and  near  the  burst  may  be  subjected 
to  the  effects of the  airblast-induced  ground  motion 
long before  the  directly-induced  motion  arrives. To 
illustrate  this  effect,  suppose a structure is just be- 
low the  surface  at a range of 3000 ft  from a large 
yield  device  (corresponding  to  an  overpressure of 
approximately 130 psi  from a 1-mt  surface  burst). 

If the  average  velocity of the  airblast  were 6000 ft/ 
sec  while the  seismic  velocity in the  soil  were 
3000 ft/sec,  the  airblast-induced  motion would reach 
the  structure  in one-half second while the  directly- 
induced  motion would a r r ive  in one  second.  For  the 
structure  located 3000 ft  directly below a surface 
burst,  the  other  conditions  remaining  the  same,  the 
directly-induced  effects would arrive  significantly 
before  the  airblast-induced  motion. With inter- 
mediate  locations of the  structure  the two sources of 
ground  motion would more  nearly  superimpose on 
arrival  at  the  structure.  From  this  example, how- 
ever,  it  should not be  assumed  that  the  directly- 
induced  effects would always  predominate  for a 
structure  located  near  the  surface in soil  at a range 
where  these  effects  arrive  before  the  airblast; i. e . ,  
at a range  where  the  seismic  velocity of the  medium 
is significantly  greater  than  the  average  air-shock 
velocity  between  the  point of burst  and  the  location of 
the  structure. Such an  inference  is not valid  because 
the  intensity of the  airblast  generally is much greater 
than  that of the  directly-induced s t ress   a t   l a rge  
ranges.  This  generality  results  from  the  experi- 
mental  observation  that  the  airblast  overpressure 
diminishes  much  less  rapidly with distance  than  does 
the  directly-induced  stress wave  in soil.  The air- 
blast  overpressure is approximately  proportional  to 
the  inverse  cube of the  distance  for  overpressures  in 
excess of 100 psi, but to  the  inverse first power of 
the  distance  for  overpressures  less  than 1 psi; 
directly-induced s t r e s s  is proportional  approximately 
to  the  inverse  cube of the  distance  for  even  relatively 
small   stresses.  Both types of s t r e s s  have  nearly  the 
same magnitude at  the  edge of the  apparent  crater 
(Ref. V-1 .24) .  

A different  situation  develops  in  competent 
rock.  First of all,  the  experimentally  observed 
magnitude at  a given  range  for  directly-induced 
ground  motion  in  competent  rock  is  significantly 
larger  than  that in soil  (Refs. V-1 .22  - V-1 .24) .  The 
increase in magnitude of motion  in  rock  compared  to 
that  in  soil  probably i s  a result of the  better so- 
called  tamping  afforded by the  more  competent  med- 
ium.  There  also is some  indication  (Ref. V-1 .17)  
that  the  stress wave diminshes  less  rapidly  in  rock 
than  in  soil.  This  may  be a result of the  Coulomb 
damping  in a granular  medium  (soil)  being  greater 
than  the  viscous  damping in a more  continuous  medi- 
um (rock) (Ref. V-1 .26) .  Similarly  the  seismic 
velocity of competent  rock  normally is comparable  to 
the  shock  velocity of the  airblast  just beyond the fire- 
ball.  Consequently  in  such a medium  the  directly- 
induced  effects  normally  arrive  before  the  airblast- 
induced  effects. 

V - 1 . 4  EFFECT  OF  TYPE AND PROPERTIES O F  
MEDIUM 

As implied  immediately  above,  the  type of 
medium  may  be  divided  into  two  general  classes: 
rock  and  soil.  The  demarcation  however is not 
clearcut; a highly weathered  rock  may  behave  more 
like  soil  than  rock,  or on the  other hand a well- 
cemented  soil may behave  in a manner  similar  to 
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rock.  Empirical  data  (Ref.  V-1.23)  also  indicate 
that  soil  should be divided  into two subcategories: 
saturated  (including  plastic  clays)  and  non-saturated. 
Again a  nebulous area  exists in these  subcategories; 
if the  moisture  content is  at  either  extreme  the  situ- 
ation i s  obvious, but there   is  no definition  currently 
available  specifying  the  degree of saturation  at which 
a soil  behaves a s  though  it were  completely  saturated. 
The  problem  here  involves  whether  the wave propa- 
gates by intergranular  contact or by hydrostatic  con- 
ditions  developing in the  fluid  filling  the  voids.  Even 
when a so i l   i s  not completely  saturated  relatively 
small  changes in volume  could  effectively  produce  a 
completely  saturated  condition. 

One of the  most  important  properties of the 
medium which influences both airblast-  and  directly- 
induced  effects in the  free  field is the  seismic  veloc- 
ity of the  medium.  The  effective  dynamic  character- 
istics of an  inhomogeneous  medium  include  the  aver- 
age  nature of the  medium which l ies  between  the  point 
of burst  and  the  location of the  structure as well a s  
layering of the  strata  above  and  below.  For  example, 
if the  medium is homogeneous or  if the  structure  is 
located in the  same  geologic  stratum a s  that  at  the 
point of detonation,  the  directly-induced  effects may 
predominate. If stratification  exists  between  the 
structure  and  the point of burst  the  airblast- 
induced  effects  may  predominate. In either  case  the 
properties of the  medium  through which the wave 
propagates  influence  the  character of the s t r e s s  
reaching  the  vicinity of the  structure. 

The stress-strain  characteristics  and  the 
mechanism of failure of the  medium, in addition  to 
i ts  geologic  characteristics,  may  influence  the 
character  and  strength of shock  reaching  a  structure. 

Shapes of dynamic stress-strain  curves  for the 
medium  in  situ  can  influence both the  intensity of 
stress  transmitted  and  the  variation with time of the 
various  stress-wave  phenomena. If the  medium i s  
homogeneous  and  elastic,  a  characteristic of some 
rock,  the  stress wave decays with distance  mainly as 
a  result of geometric  dispersion. For a   s t ress-  
strain  curve of the  type shown  in Fig.  V-1.16  the 
stress  propagates with increased  rise  time with dis- 
tance  traveled  because  the  higher  intensity  stress 
propagates  more  slowly  than  the  lower  intensities. 
In  addition  this  stress-strain  characteristic may r e -  
sult  in a diminution of s t r e s s  with  distance  since  the 
unloading  wave can  overtake  the  loading  wave.  A 
similar  diminution of s t r e s s  with distance  can  occur 
for a locking  medium; a stress-strain  curve  charac- 
teristic of such  a  medium is shown in Fig.  V-1.17. 

V-1.4.1  Seismic  Velocity  and  Density 

The  seismic  velocity  implicitly  includes many 
characteristics of the  medium.  The  dilatational 
wave (seismic)  velocity  c  may  be  expressed in te rms  
of the  modulus of elasticity  E,  Poisson's  ratio V ,  and 
density p .  

c =q- p(l+u)(l-2v  (V-1.5) 

Velocities of other  waves  can be important,  and  they 
can  be  expressed as a  fraction of the  dilatational 
velocity.  The  shear wave (distortion)  velocity  cs is: 

c s = c 2 ( 1 , 7  
1 - 2 u  (V-1.6) 

Rayleigh  waves  propagate with a velocity CR which i s  
a complex  function of Poisson's  ratio;  for = 0, 
CR = 0.8740 cS and for v = 1/4, CR = 0.9194 cs. For 
nonlinear  media of the  type shown in  Fig.  V-1.16  the 
modulus of elasticity  may  be  interpreted as the  in- 
stantaneous  tangent  modulus  consistent with the  in- 
tensity of stress  considered;  for locking  media 
(Fig.  V-1.17) a s  the  secant  modulus  consistent with 
stress  intensity.  Thus,  although  the  seismic  veloc- 
ity  depends upon the  stress-strain  characterist ics,  
these  characterist ics  are not defined by it. 

The seismic  velocity  has  a two-fold signifi- 
cance in evaluating  the  behavior of a  structure.  First 
if the wave is plane or  nearly s o  and it impinges on a 
- plane  surface of a structure,  the  stresses  transmitted 
to  the  structure  are  related  to  the  incident  stresses 
in the  medium by the  relative  acoustic  impedance of 
the two materials s o  long as they  remain in contact 
(Ref. V-1.27). Acoustic  impedance is the  product of 
the  mass  density p and  seismic  velocity  c  for  each 
material. If the  subscript 1 denotes  conditions in 
the  medium,  subscript 2 denotes  conditions in the 
structure, and continuity of s t r e s s  and  displacement 
across  the  plane  interface is maintained. 

2 
" - p2c2  (V-1.7) 
O 1  P I C l  + p2c2 

The stress  reflected  back  into  the  medium or has  an 
intensity  given by: 

"r - P2'2 - P l C 1  (V-1.8) 

O1 P I C l  + PZC2 
" 

STRAIN 

FIG. X-1.17 STRESS-STRAIN CHARACTERISTICS FOR LOCKING 
MEDIUM 
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Secondly  the  seismic  velocity  influences  the 
behavior of a  structure by defining the time  re- 
quired  for  the wave to  envelop  the  structure  and  the 
relative  motions which might develop  along  the  sides 
of the  structure  parallel  to  the  direction of shock 
propagation.  The  time  required  for a wave to  en- 
velop a structure  is  important  in  the  determination of 
the  time  the  structure  remains  relatively  stationary 
while  the  soil in the  vicinity of the  structure  moves 
past  it. In tending  to move past  the  structure,  soil 
can  cause  increased  stress  to  develop on the  face of 
the  structure  perpendicular  to  the  direction of shock 
propagation. The increased  stress may  remain  until 
the wave has  propagated  a  sufficient  distance  to  pro- 
duce  motion of the  medium beyond the  structure.  Rel- 
ative  motions  along  the  sides of the  structure  paral- 
lel  to  the  direction of propagation  can  produce  the 
effects  pictured in Fig. V - 1 . 1 8  if the  stress wave  in 
the  structure  propagates with a higher  velocity  than 
that in the  medium, If the  relationship  among  the 
velocities  is  reversed,  the  direction of the  shearing 
forces  in  Fig. V - 1 . 1 8  would be  reversed. 

,-Wove Front In Medium 

- " "- 
-e- Sheor Forces Along Interface <== - 

--- 7 

Wove Front In Structure 
L 

FIG. P-1.18 EFFECT OF RELATIVE MOTION  BETWEEN SOIL AND 
STRUCTURE WITH LONGITUDINAL  AXISOF STRUC- 
TURE PARALLEL TO DIRECTION OF SHOCK 
PROPAGATION 

V - 1 . 4 . 2  Stress-Strain  Characteristics 

Some of the  effects of the  stress-strain  charac- 
teristics  already have been  mentioned;  namely: 
(1) The  shape of the stress-strain  curve  and  the 
"elastic  properties" of the  medium  influence  the  man- 
ner in  which the  ground  motion  propagates  and (2) the 
conditions of s t ress  and  strain in the  medium  and 
their  influence on the  character of s t ress   a t  a point. 
Therefore,  the  discussion  in  this  section  will be re -  
stricted  to  the  influence of stress-strain  character-  
istics on the  forces  acting on a structure. 

For a static  condition of hydrostatic  stress in 
an  elastic  medium,  the  stress  transmitted  across a 
spherical  interface  between two elastically  dissimi- 
lar  materials  is  related  to  the  relative  compres- 

sibility of the two materials  (Ref. V-1.28).  If the 
inner  sphere  (inclusion)  is  more  compressible  than 
the  surrounding  medium  the  stress  at  the  interface 
is reduced below that in the  surrounding  medium  and 
is  increased if the  inclusion is less  compressible. 

However,  it  already  has  been  mentioned  that  a 
condition of unidimensional  strain may be  approached 
in the  medium at  relatively  large  ranges  from  sur- 
face or air   bursts with yields of tens of kt or more. 
Thus,  it is unlikely  that  the  inferences  drawn  from 
consideration of a hydrostatic  state of s t r e s s   a r e  ap- 
propriate.  Alternatively  it would appear  that  for  walls 
of structures  parallel  to  the  direction of shock  prop- 
agation  at  least,  complete  rigidity of the  walls 
would produce  stresses  acting  normal  to  the  wall 
which a r e  identical  to  the  tangential  stresses  in  the 
medium away from  the  wall.  This  results  from  the 
fact  that  the  rigid  wall  identically  satisfies  a  con- 
dition of one-dimensional  strain  at  the  structure- 
medium  interface.  Furthermore,  this  argument 
would imply a reduction in stress  for  structural  walls 
which were not rigid. It will  be shown later  that  this 
implication is not clearly  supported by empirical 
measurements. Although there  frequently is major 
scatter in the  empirical  data, it appears  that  gages 
and  structures in soil  "feel"  the  same  pressure as 
that which exists in the  field. 

This  observation  can  be  explained on the  basis 
of the  normal  large  difference  between  the  elastic 
properties of soil  and  a  structure.  These  elastic 
properties, of course,  define  the  relative  stiffness or 
compressibility.  The  modulus of elasticity of struc- 
tural  materials  generally  is  several  orders of mag- 
nitude  greater  than  that of soil.  Consequently many 
structural  elements  can  be  expected  to  be a s  much as 
an  order  of magnitude  stiffer  than  the  surrounding 
soil. Such structural  stiffness  frequently  is  required 
to  resist  the  static  loads  alone.  Thus,  buried  struc- 
tures  usually  will  approach  more  nearly  a  rigid  than 
a flexible  condition  compared with the  deformational 
characteristics of the  surrounding  soil. If the  soil 
surrounding  the  structure is not "elastic"  and a con- 
dition is approached  wherein  essentially  a  constant 
stress  for  relatively long periods of real   t ime  is  
propagated  irrespective of the  magnitude of the  strain 
(Fig. V - l . l 6 ) ,  this  effect of rigidity  should  be  mag- 
nified. On the  other hand should  the  soil  be  locking 
(Fig. V-l.17), the  rigidity of the  medium  might  be- 
come  greater  than  that of the  structure,  and a sig- 
nificant  reduction i n  s t ress   act ing on the  structure 
might  be  expected.  However,  the  magnitude of 
strain  developed in the  medium,  except in the 
"plastic zone" of the  crater (Ref. V-2 .24) ,  does not 
appear  to  be  large enough to  cause  locking in most 
soils. 

The  relative  rigidity of rock  compared  to a 
structure  located  in  it  can  be  very  large.  There- 
fore,  an  entirely  different  condition  than  that  just 
described might be expected  for  structures  located 
in  rock.  However,  from a practical  standpoint  it  is 
impossible  to  construct a lined  tunnel which will be 
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truly in contact with the  face of the  rock.  Such  con- 
struction is possible  with  reinforced  concrete, but 
the  irregular  boundary which almost  always  exists 
between  the  rock  and  the  concrete  suggests  that  the 
behavior of a reinforced  concrete  lining would not be 
consistent with the  assumption of a continuous bound- 
a r y  between  the  rock  and  structure.  This  effect 
could  be  magnified by the  difference  in  properties of 
the  concrete  filling  the  irregularities  and  the 
surrounding  rock. 

The  empirical  data  applicable  to  the  hypotheses 
regarding  relative  stiffness of soil  and  structure  are 
numerous.  First of all  it  should  be noted how the 
"true"  intensity of s t r e s s  in the  medium is assessed 
before  discussing  the  specific  types of measurement. 
In static  laboratory  tests  sufficient  measurements 
can  be  made  to  infer  the  average  intensity of s t r e s s  
developed within a specimen of soil. In field  tests 
the  manner  in which the  stress  propagates  can  be 
inferred on the  basis of the  theoretical  conditions 
already  discussed. If the  measurements  are  consis- 
tent with the  theoretical  inferences,  the  gage  or 
structure, on which the  measurements  are  taken,  is 
considered  to  have "felt" the  same  effects  as  those 
which exist  in  the  free  field.  Furthermore  for  stress 
measurements  taken on structures,  the  validity of the 
measurement  can  be  established  independently by 
analyzing  the  structure  using  the  measured  force  to 
determine if the  computed  deformations are   consis-  
tent with those  observed. 

Many static  laboratory  experiments  have  been 
conducted  to  determine  the  characteristics of soil 
pressure  cells.  These  experiments  have  been  ham- 
pered  generally by difficulty in duplicating  the  prop- 
er t ies  of the  soil  surrounding  the  gage  in  a  series of 
tests. Yet  it is concluded  in  Ref. V - 1 . 2 9  that  an  in- 
clusion  in  soil would have  to  be  very  "hard"  before a 
significant  degree of over-registration would occur; 
on the  other hand an  inclusion only slightly  "softer" 
than  the  surrounding  soil would register  a  significant 
reduction  in  pressure.  A  similar  evaluation of the 
behavior of gages is presented  in  Ref. V-1 .30 .  

The  empirical  data  from  field  tests  presented 
in Refs. V - 1 . 1 2  to V-1 .16  were  obtained by soil 
pressure  and  stress  gages,   soil   strain  gages,   struc- 
tures,  simulated  structures,  accelerometers,  and 
displacement  gages. In general,  the  side-on  over- 
pressure  measurements  and  peak  particle  velocities 
prior  to  arrival of the  directly-induced wave com- 
puted  from  the  accelerograms  agree  with  the  theo- 
retical  predictions  from  Eq. V - 1 . 2  (Fig. V-1 .19) .  
At the  maximum  depth of 5 ft  considered in the figure, 
little  attenuation would be  expected  and  the  free-field 
s t r e s s  should  equal  the  overpressure.  Accelerations 
also  were  measured  at  depths up to 150 ft, but the 
particle  velocities  computed  from  these  data  exhibit 
so much  scatter  that no clearcut  correlation  with 
vertical   stress  can be  detected. 

The  simulated  structures  (Ref. V-1 .14)  con- 
sisted of s teel   drums with  aluminum  diaphragms 
clamped  over  either  or both ends.  The  diaphragms 
were  calibrated  against  strain  and  deflection by ap- 
plying gas  pressure  to  them  before  being  buried  in 
the  soil.  Conventional  Carlson  cells  were  buried 
near  the  drums.  These  drums  indicated a lesser  
s t r e s s  than  that  measured by the  Carlson  cells  or 
predicted on the  basis of the  static  (Boussinesq)  at- 
tenuation.  Similar  behavior  was  noted in the  more 
flexible  steel  beams  in  the roof of the  structure 
tested  (Ref. V-1 .13) .  However, as will  be  discussed 
later much of this  difference in s t r e s s  on the  struc- 
tures  can  be  attributed  to  arching of the  soil  around 
the  simulated  structures or structure. 

V - 1 . 4 . 3  Tensile  Strength 

The  tensile  strength of the  medium  has  an 
important  effect both on the  propagational  character- 
istics  and  on  the  behavior of a structure.  Unless  a 
soil  is  cemented  or highly cohesive,  its  tensile 
strength  is  effectively  zero.  For  cemented or co- 
hesive  soils  and  most  rocks  the  ultimate  tensile 
strength is approximately  an  order of magnitude less  
than  the  ultimate  compressive  strength. 

From Eq. V-1 .8  it is obvious  that a tension 
wave is reflected  from a boundary  where  the  acoustic 
impedance of the  structure is less  than  that of the 
medium.  This  reflected  wave  superimposes  itself on 
the  incident  wave,  and  in many cases a net  tension 
develops. If this net tension  equals  the  ultimate  ten- 
sile strength of the  medium,  fractures  develop 
(Ref. V-1 .27) .  Multiple fractures can  develop when 
the wave length of the  incident  pulse  is long compared 
with the  thickness of the spa11 (the  material  thrown 
off as a result of the  tensile  failure).  Spalls  are 
thrown  off  with a velocity  consistent with the 
momentum  trapped  within  them. 

A decrease  in  acoustic  impedance  obviously 
exists  for  an  opening in rock.  However,  an  analogous 
situation  can  develop if for  any  reason a structure 
deforms away from  the  adjacent  medium.  For  the 
latter  case  developing in soil,  the  soil  adjacent  to  the 
structure would fail immediately  because of i ts  
inherent  lack of tensile  strength. 

Another  mechanism of failure which might 
occur  for  unlined  openings  in  rock  involves  tensile 
stresses  along  the  sides of the  opening  for  normal 
incidence of the  shock  with  respect  to  the  axis of the 
opening. For  a circular  opening  subjected  to  uniaxial 
static  compression a circumferential  tensile  stress 
equal  to  the  compressive stress develops at   the 
extremes of the  diameter  parallel  to  the  direction of 
applied stress (Ref. V-1.28) as shown  in Fig. V-1.20. 
A study  (Ref. V-1.31) considers  a  circular  hole  in  an 
infinite  medium  subjected  to  the  effects of a  step 
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MAXIMUM DOWNWARD VERTICAL  VELOCITY, 11 /sec 

FIG. P-1.19 MAXIMUM DOWNWARD VERTICAL  VELOCITY VS PEAK OVERPRESSURE (NTS - 
VELOCITY  COMPUTED FROM ACCELEROGRAMS  PRIOR TO ARRIVAL OF 
DIRECTLY-INWCED WAVE) 

pulse  compression wave of infinite  duration.  For 
this  wave  the  maximum  tensile  stress  was 1.16 times 
the  magnitude of the  applied  stress;  the  maximum 
compressive  stress  was 3.28 times  the  magnitude of 
the  applied  stress. A solution  for a shear  (distortion) 
wave intersecting  the opening was obtained in the 
same  reference;  the  maximum  stress  in  this  case was 
4.37 times  the  magnitude of the  applied  stress.  These 
three  dynamic  stress  coefficients  should  be  compared 
with the  static  values of 1.00, 3.00, and 4.00, re- 
spectively.  Thus  even  for a step  pulse  the  maximum 
s t resses  are predictable with a high degree of 
accuracy on the  basis of the  static  solutions. 

The  large  tensile  stresses  implied by these 
solutions  indicate a distinct  possibility  that  tensile 

fractures  can  occur  radially  along  the  boundary of 
an opening in rock.  Because of natural  joints  or 
planes of weakness  caused by driving  the  tunnel,  it 
is possible  that  rock  can  be  dislodged  should  these 
radial  tensile  failures  develop. 

V-1.4.4 Cohesion  and  Internal  Friction 

Strength of soils, like that of many  other  mate- 
rials, can  be  measured by the Mohr envelope of 
failure (Ref. V-1.32) as shown in  Fig. V-1.21. As 
indicated in the  figure  the  intercept of the Mohr 
envelope on the  shear  axis  for  soils  is  defined as the 
cohesive  strength.  Cohesion  normally is present  for 
soils  containing  relatively high clay  contents; how- 
ever other  constituents  such as caliche  can  produce 
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FIG. P-1.20 CIRCUMFERENTIAL STRESSES PRODUCED BY 
UNIAXIAL  STATIC COMPRESSION  ON A CIRCULAR 
HOLE  IN  AN  INFINITE  PLATE 

I t 
MINOR AND MAJOR  PRINCIPAL  STRESS 

FIG. X-1.21 MOHR'S ENVELOPE  OF  RUPTURE  AND  NOTATION 
USED  FOR SOIL FAILURE 

cohesion.  The  slope of the  Mohr  envelope is defined 
a s  the  internal  friction,  tan 69, with LO the  angle of 
internal  friction.  Internal  friction  normally  is 
present  in  soils  containing  relatively high sand  con- 
tents.  Plastic  clays,  generally  clays with high 
moisture  contents,  frequently  exhibit  zero  internal 
friction.  Thus,  the  Mohr  envelope  for  such a 
material  is  a  horizontal  line. 
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Since  the  strength of soils generally  can  be 
measured by their  cohesion  and  internal  friction, 
behavior of soil  under load is inherently  related  to 
these  parameters.  Arching  above a structure  and  the 
resistance  mobilized as a  result of structural  defor- 
mation  should depend on these  parameters. The 
phenomenon of arching is developed in the  following 
chapter.  Therefore.  the  discussion  here  will be lim- 
ited to the  resistance  mobilized in the  soil by struc- 
tural  deformations.  These  resistances  can  develop 
along  the  exterior  surfaces or beneath  the  foundations 
of a structure.  Generally  the  forces  mobilized in the 
soi l   are  a result of the  structure's  deforming  into 
the  soil. 

Structural  deformations  tend to be  antisymmet- 
rical with respect  to  the  axis of the  structure  because 
the  loading  traverses  the  structure in a  finite  time. 
A s  a  result,  buried  structures  tend  to move in the 
direction of shock  propagation  thereby  mobilizing 
resistance in the  surrounding  soil  opposing  the 
motion  (Fig. V-1.22) .  It is  probable  that  the  resis- 
tances  developed in the  soil  under  these  conditions 
a r e  the  active  and  passive  pressures which depend 
directly on the  cohesion  and  internal  friction  (Ref. 
V-1.32). The  transient  loading  acting on the  surface 
however  produces  a  tremendous  surcharge (when 
compared with static  cases) on the  zones of soil 
defined by the  classical  planes of failure  and  the 
ground  surface.  Consequently  a much larger  passive 
force is available  to  resist  deformations of a struc- 
ture  subjected  to  airblast-induced  stress  compared 
with the  force on the  same  structure  subjected to 
static  load. 

Potentlol 
Acilve Follure 
Of S o d  

FIG P-1.22 POTENTIAL SURFACES OF  FAILURE  IN SOIL 
SURROUNDING A STRUCTURE 

V-1.5 EFFECTS OF STRUCTURAL TYPES AND 
PROPERTIES 

The  type of deformation  induced in a buried 
structure  influences  the  resistance  mobilized in the 
surrounding  medium.  These  resistances in turn 
define  the  loading on the  structure and hence  the 
deformations.  The  mutual  dependence of structural 
deformations  and  medium  resistances  is  extremely 
important  in  evaluating  the  behavior of an  under- 
ground  structure.  Included in this  section  are: (1) 
a general  discussion of the  character of the  deforma- 
tion  induced in various  structural  types; (2) com- 



ments on the  relative  compressibility,  natural 
periods of vibration,  strength,  and  ductility of 
structural  types  and (3) concepts of virtual  mass. 
Speculation of the  character of the  deformation is 
required  to give a basis  for  the  comments on com- 
pressibility  and  natural  periods of vibration. 

V-1.5.1 Structural  Deformation  and  Damage 

Field  tests have  not  included al l  conceivable 
types of underground  structures; as a matter of fact, 
the  tests have  included a  relatively  small  number of 
buried  structures.  Therefore,  this  section  includes 
speculations on the  character of deformation  expected 
in various  types of buried  structures. In the following 
chapter  experimental  and  analytical  studies of the 
response of buried  structures  are  summarized. 

Rectangular  Structures.  Rectangular  structures 
are  those  consisting of several  plane  elements  forming 
the  exterior  surfaces of a rectangular  parallelepiped. 
The  interior  may  be  free of structural  members  or  it  
may  include  columns  and/or  walls  and  girders  sup- 
porting  the  roof  and  exterior  walls  at  intervals.  Each 
of the  individual  exterior  elements of such  a  structure 
deform  under  the  influence of the  stress in the  medium 
adjacent  to  the  member. In turn  the  interior  elements 
or  foundations  supporting  these  members  respond  to 
the load transmitted  to  them. At the  same  time  the 
over-all  structure  begins  to  respond as a rigid body 
under  the  influence of the  motions of the  medium in 
the  vicinity of the  structure.  This  rigid body motion 
contributes  additional  deformation  to  the  individual 
elements of the  structure. 

Perforce  the  span of separate  members of such 
a  structure  is  small,  at  most  limited  to a few tens of 
feet, since  longer  spans  require  thicknesses of 
elements which a r e  prohibitive in cost when propor- 
tioned  for  loads of 30 psi  or  more.  For  example,  it 
can  be shown from  the  equations of Chapter V-6, that 
a reinforced-concrete, one-way slab with a depth of 
12 in. would be  adequate  for a span of approximately 
10 ft and  loading of approximately 30 psi  while 
doubling the  span  to 20 ft would require a slab approx- 
imately 24 in. thick.  Because  the  added  cost of form- 
work  can be offset by savings in material,  arches  or 
domes  become  more  economical  than  rectangular 
structures when large  clear  spans are required. Be- 
cause  the  spans of members  in  rectangular  structures 
generally  are  short  the wave envelops  them  quickly 
and  the  transient  response induced by the  envelopment 
can  be  expected  to be a small  fraction of the  response 
caused by the  loading which develops on the  complete 
member after envelopment.  Thus,  each  member 
should  respond  primarily in its  fundamental  mode. 

The  over-all  structure  may  translate in the 
direction of shock  propagation as illustrated in Fig. 
V-1.22. However,  this  translation  mobilizes  resis- 

tance  in  the  surrounding  medium,  and  this  resistance 
impedes  the  translation.  For  structures  near  the 
surface  this  resistance  is  augmented by the  over- 
pressure  after  the  airblast  envelops  the  structure. 
Consequently  for  structures  near  the  surface  and 
subjected  to  airblast-induced  effects,  major  trans- 
lation  exists only so long as the wave is enveloping 
the  structure. 

In a vertical  direction,  gross  translation  results 
f rom the  loads  transmitted  through  the  structure  to 
the  foundation  and  from  the  motion of the  medium  in 
the  vicinity. 

Arches  and  Domes.  Althoughthe  curved  surfaces 
of arches and  domes  complicate  the  picture showing 
the  mobilization of resistance  in  the  surrounding  me- 
dium (Fig. V-1.22), these  resistances  must  develop. 
Consequently gross  horizontal  translation of these 
structures  also  is  impeded  after  the wave envelops 
the  arch  or dome. Yet because  these  structural  con- 
figurations  can have significantly  larger  spans,  this 
envelopment  may  require  longer  periods of actual 
time  than  that  required  for  rectangular  structures in 
the  same  medium.  Nevertheless,  this  time  generally 
is small  compared  to  the  time of maximum  response 
in  flexural  modes so that  primary  response of the 
shells  might  be  expected  to  occur in the  fundamental 
o r  "breathing mode" of vibration.  For  example, it 
can  be shown from  the  equations of Chapter V-6, that 
the  period of vibration in the  first  flexural  mode  for 
a 180" arch of reinforced  concrete  with  span of 100 ft 
designed  for 100 psi  (hoop  compression) would be 
approximately 3 sec. The time of maximum  response 
would  depend upon the  variation of loading  with  time, 
but it would be of the  order of 1 sec.  For  an  air-shock 
velocity of 3000 ft/sec  (corresponding  to  100-psi  over- 
pressure),  the  time  required  for  the  wave  to  envelop 
the  arch would be approximately 0.033 sec   o r  about 
one-thirtieth of the  time of maximum  response in the 
flexural  mode. 

Tunnels  in Rock. Damage  to  lined or  unlined 
tunnels in rock  generally  occurs by mechanisms which 
differ  from  those  associated  with  structures  located  in 
soils. In the  early  field  tests (Ref. V-1.23) four  types 
of damage to unlined  tunnels  were  recognized.  These 
types  were  described by zones  (Fig. V-1.23). The 
mechanisms  believed  to  be  effective  in  defining  the 
types of damage  observed  are: 

Zone I, Closure: 

Closure  occurs when the  rock in the  vicinity of the 
tunnel is literally crushed so that  there is gross  
movement of the  rock  into  the  tunnel opening.  The 
failure  apparently  can be defined by the  ultimate  com- 
pressive  strength  or by the  strains  associated with the 
ultimate  compressive  strength;  the  strains  considered 
should  be  the  strains induced  in the  vicinity of the  tun- 
nel  opening by the s t r e s s  wave. 
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No augmentation of this  strain (by a s t ress ,   or   s t ra in ,  
concentration  factor)  should  be  considered; i.e., the 
rock  appears  to  fail  generally  around  the  opening when 
the  peak  strain  in  the free field is  equal  to or greater 
than  the  strain  corresponding  to  failure of the  rock in 
partially-confined  compression.  Therefore,  the  con- 
dition which defines  the  limit of Zone I involves 
equating  the  peak  radial  strain in the  free  field  to 
the  strain  corresponding  to  the  ultimate  compressive 
strength in partially-confined  compression. 

Zone 11, Zone of General  Compression  Failures: 

This  region,  extending beyond Zone I, is character- 
ized by rock  being  displaced  from  the  surface of the 
tunnel  opening;  the  thickness of the  rock  displaced 
decreases  with  increasing  distance  from  the  point of 
detonation. Until recently  this  was  believed  to  be a 
manifestation of classical  spalling  defined by a 
compressive wave intersecting  a  free  surface, but it 
i s  cow believed, on the  basis of results  from  Hard 
Hat (Ref. V-1.53), that  the  mechanism of damage 
involves  the  general  crushing  locally of the  rock. 
The  limit of Zone 11 failure  may  be  defined by 
equating  the  maximum  local  strain  developed  at  the 
surface of the  opening (Including an  appropriate 
strain,   or stress, concentration  factor) to the  strain 
corresponding  to  the  ultimate  compressive  strength 
of the  rock in partially-confined  compression. 

Zone III, Zone of Local  Compression  Failures: 

Although continuous  spalling of the  type  observed  in 
this  zone could result  from a compression wave 
intersecting a free  surface,  it   is  considered  more 
likely,  and  the  test  results (Ref. V-1.53) a r e  not 
inconsistent with an  assumption,  that  the  stress wave 
in  diffracting  around  the opening generates  local 
compressive  stresses of sufficient  magnitude  to 
cause  compressive  failure of the  rock.  These  com- 
pressive  failures  develop when the  maximum  com- 
pressive  strain  around  the opening (including  an 
appropriate  strain  or  stress  concentration  factor) 
equals  the  strain  corresponding  to  the  ultimate 
strength in  unconfined conlpression. By equating 
these two values of strain  one  finds  the  limiting range 
at  which this  type of failure  develops. 

Zone IV, Intermittent  or  Minor  Spalling: 

Degradation of the s t r e s s  wave with distance  results 
in diminishing  the  damage  to a rock  opening with in- 
creased  distance  from  the  point of detonation.  This 
accounts  for  the  dislodged  rock  becoming  intermittent 
beyond the  limit of Zone Ill damage.  Furthermore it 
is  apparent  that  tensile failures of the  rock  surround- 
ing the  opening  can  occur.  These  tensile  failures 
develop  essentially  in a radial  direction,  and  the 
openings  produced would allow  rock  disturbed by the 
original  driving of the  tunnel  to fall by gravity  into 
the opening. The  limit of Zone IV damage,  the  maxi- 
mum  extent of observed  damages  produced  in  tunnels 
in  rock, is defined by equating  the  tensile  strain 

which develops  locally on the  surface of the  tunnel 
(requiring  consideration of the  appropriate  strain,  or 
stress,  concentration  factor)  to  the  actual,  or 
effective,  tensile  strength of the  rock.  Care  must  be 
exercised in defining  the  tensile  strength of the  rock. 
Most  conventional tes ts  of the  properties of the  rock 
are performed on sound samples  taken  from  the 
formation;  in many cases  the  rock  contains  numerous 
joints which may or may not be  cemented.  Thus,  the 
effective  tensile  strength  may  be  much  less  than  that 
defined by laboratory  tests  and  may  approach  zero. 
To  estimate  this  strength,  consideration  must be 
given to  laboratory  tests,  to  lithostatic  conditions, 
and  to  tectonic  forces. 

Even  though  the  use of the  numbered  zones  de- 
fined above has been  common  since  1953(Ref. V-1.25), 
it now is suggested  that  more  definitive  descriptions, 
based upon the  type of failure involved as discussed 
above, can be  assigned  to  these  phenomena and to  
their  limits.  Consequently  hereinafter  the following 
terms  will  be used: 

Zone of Closure  and  Limit of Closure 
instead of Zone I and  Limit of Zone I 
Damage. 

Zone of General  Compression  Failures 
and  Limit of General  Compression 
Failures  instead of Zone I1 and  Limit of 
Zone II Damage. 

Zone of Local  Compression  Failures and 
Limit of Local  Compression  Failures 
instead of Zone III and  Limit of Zone I n .  
Damage. 

Zone of Minor  Spalls and Limit of Damage 
instead of Zone IV and  Limit of Zone IV 
Damage. 

Similar  zones of failure  were  observed in tes t s  
employing  completely  contained  nuclear  detonations 
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(Ref. V-1.33). In these  tests a conventional  tunnel 
lining  generally  was  provided, and the  tunnels fre- 
quently  were  oriented  with  respect  to  the point of 
burst  differently  from  the  tunnels  subjected  to  the 
effects of high explosive  charges. 

When a lining is introduced  into a tunnel,  this 
lining is subjected  to  the  effects  resulting  from  the 
failure of the  rock  described  above.  To  survive,  the 
lining  must resist  either  closure,  spalling,  or 
slabbing. Upon consideration of the  inherent  strength 
of the  rock it is doubtful  that  linings  can  be  propor- 
tioned  to  survive  the  conditions  associated with com- 
plete  closure of the  tunnel.  However,  it is probable 
that a lining could survive  the  effects of spalling  or 
slabbing of the  surrounding  rock. 

V-1.5.2 Relative  Characteristics of Various 
Structural  Types 

An underground  structure  normally is less 
dense,  frequently is stiffer  and  usually  has  greater 
effective  strength  than  the  soil  it  replaces. On the 
other hand tunnel  linings  in  rock  normally a re   more  
flexible  and  usually  have  less  effective  strength  than 
the  rock  they  replace.  Each of these  parameters 
may  influence  the s t r e s s  and  motion  acting on the 
structure. 

Compressibility.  Compressibility  can  be  com- 
puted as the  ratio of the  change  in  volume  to  the 
original  volume.  Therefore,  the  compressibility of 
a rectangular  structure  compared  to  that of an  arch 
or  dome  can  be  assessed if the  change in volume 
produced by the  loading  can  be  defined.  The  change 
in volume  can  be  derived  from  the  deflections of the 
elements of the  structure.  For a one-way slab of 
unit  width or a ser ies  of beams  continuous  over 
several  supports,  the  effective  change  in  volume 
implied by the  maximum  deflection  can  be  defined  in 
t e r m s  of the  span L, the  intensity of load  p  over  the 
unit  width or  over  the  spacing  b  between  adjacent 
beams,  the  modulus of elasticity of the  material  E, 
and  the  effective  moment of inertia of the  section I 
for a unit width or  for a single  beam of a set with 
spacing b. The  effective  moment of inertia is the 
actual  value  for  homogeneous  construction  and  the 
transformed  value  for  reinforced  concrete  or  other 
composite  construction. To derive  the  effective 
change in volume  the  static  deflected  shape  for a 
beam  supporting a uniformly  distributed  load  and 
fixed  at  both  ends  was  assumed on the  basis of the 
Ftayleigh-Ritz approximation.  Also  the  deflection at 
yielding of the  material  was  chosen  to  balance  the 
area between  the  theoretical  and  effective  resistance 
(Fig. V-1.24). Using  the  parameter pr   to   represent  
the  ratio of the  maximum  deflection  to  the  effective 
yield  deflection xy defines  the  maximum  change in 
volume AVr for  each  slab of constant  thickness, 
fixed  at  both  ends,  assuming a step  function  loading 
of inifinite  duration: 
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FIG. X-1.24 CONVENTIONAL  ELASTO-PLASTIC  RESISTANCE FOR 
STRUCTURAL  ELEMENTS 

For a comparable flat slab  or  plate  the  change in 
volume  normally would be  somewhat less than that 
in a one-way slab. 

A circular  arch  or  cylinder of uniform  thick- 
ness  with  radius r and thickness  t in which all de- 
formation is restricted  to  shortening of the  rib  will 
experience a change in volume AVa under the action 
of a step  function  loading p, if higher  order  terms 
are neglected : 

where Va i s  original  volume  and pc is   the   ra t io  of 
maximum  circumferential  strain  to  yield strain. If 
the  arch  is   r ibbed with  b  the  spacing  between  ribs 
and A the  cross  sectional area included in the  width 
b, the  change in volume in the  ribs  alone  for  width  b 
is : .. 

AV E 2V - a 

For  a dome of constant  thickness,  the  change  in  vol- 
ume would be approximately  three-fourths  that of the 
arch with  the  same  thickness and radius or approxi- 
mately  one and  one half times that of the  arch  de- 
signed for the  same loading. 

From  the  above  equations  the  compressibility 
of a rectangular  structure  can  be  obtained by sum- 
ming  the  changes  in  volume  for  the  individual 
elements  neglecting  the  change  in  volume  produced 
by axial deformation, which is small  in  comparison, 
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and  dividing  this  total  volume  change by the  original 
volume of the  structure.  The  compressibility of a 
cylinder is defined  directly by the  equations  given. 
It is difficult  to  generalize  the  possible  structural 
configurations, but taking  practical  structures  it is 
apparent  that  an  arch  almost  always is considerably 
more  compressible  than a rectangular  structure of 
the  same  length  and  enclosing  the  same  volume. A 
dome is even  more  compressible  than  the  comparable 
arch. 

Footing Motions. Phenomenologically  an  in- 
crease in compressibility  can  be  produced by motions 
of footings of structures. If by design,  the  footings of 
any structure,  or  supports of a structural  element, 
can  be  forced  to  move,  the  effective  compressibility 
can  be  significantly  enhanced. A brief  study of the 
motions of footings has been made (Ref. V-1.34). This 
study  considered a model  (Fig. V-1.25) of the  overall 
structure  subjected  to  overpressure on the roof (thus 
corresponding  to  conditions  near  the  surface)  with  the 
footings  subjected to  accelerations  identical  to  those 
in the  surrounding  soil.  The  accelerations in the  soil 
were  computed  from Eq. V-1.3 and  the  data  from  the 
Boussinesq  solution  (Section V-1.3.1) by assuming 
that  the  observed  attenuation  with  depth  resulted  from 
an increase in rise time of ver t ical   s t ress  with  depth 
and that  the  stress in the free medium was effective 
in the  vicinity of the  footings. 

These  analyses  result in two  equations (V-1.12 
and V-1.13) for the net s t r e s s  on the  loaded  element 
p  expressed as a ratio  to  the peak overpressure at 
the point above  the  structure Apm. 

or 

18 x Apm213 dl 

w l'3 
(d2 - 2) 

(V-1.12) 

dl 9 x Apm 2/3  dl 
_ E =  1" 
'Pm 2d2 w li3 

(V-1.13) 

where APm = 

w =  
dl = 

d2 = 

peak  overpressure in psi (must be 
greater  than  approximately 30 psi) 

weapon yield in mt 

depth below surface  to  loaded 
element in ft 

depth below surface  to  base of 
footing in ft  (must  be less than 
approximately 50 ft) 

The  limitations on overpressure and depth  result 
from  the  fitting of algebraic  equations  to  the  positive 
phase  duration of the  triangular  representation of the 
impulse in ideal wave shapes  for  the  overpressure  and 
Boussinesq  solutions, and these  equations  do  not  match 
the solutions  they  approximate  outside of the  given 
limits. Also Eqs. V-1.12 and  V-1.13 are  derived  for 
a soil  with  seismic  velocity of 2000 ft/sec.  The  net 
stress  acting on the  loaded  element  is  the  larger  value 
of p  determined  from  the two equations. 

Study of these  equations  indicates  for  most  prac- 
tical  structures,  the  effect of footing  motion is  rela- 
tively  insignificant  for weapon yields  greater  than 
approximately 100 kt  since d2 would normally  be only 
a few feet  more  than  dl. 

Natural  Period of Vibration.  Another  structural 
parameter of fundamental  importance in assessing  the 
behavior of members  subjected  to  dynamic  loads  is 
the  natural  period of vibration.  Because  most  struc- 
tural  elements have distributed  mass,  they  possess 
an infinite  number of periods.  However, on the  basis 
of the  discussion of types of deformation in Section 
V-1.5.1 only  certain  periods  predominate in the re- 
sponse of elements of undergromd  structures. 

For  the  type of deformation  which  normally 
occurs in completely  buried  rectangular  structures, 
it  appears  that  the  fundamental  period of vibration 
for  each  member  is  of  major  importance.  For  homo- 
geneous  materials  this  period  can  be  defined as 
(Ref.  V-1.35): 

I 
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velocity = g ( x - y ) = g ( u P o  Displacement = f (x -y )  = f (ul ir Force In Sprlng Is A 
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7,. Y. Y 
Dlfferentlal  Equation Of Matlon : 

mu + f(u) = p(t)-my 

p ( t ) =  force acting on mass 

m = magnltude of mass 

x.  x. x = absolute displacement, velocity and  acceleration of 
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Tr = Ro L (V-1.14) 

where  m = mass  per  unit of length 

Ro i s  a constant  for any given  condition of 
support.  Values  for  the  normal  con- 
ditions are: 0.636 for  simple  sup- 
ports; 0.318 for  complete  fixity at 
each  end;  and 0.423 for  complete 
fixity at one end and  simple  support 
at  the  other. 

All other  symbols  have  been  previously  defined. 

For reinforced  concrete  the  fundamental  period 
of one-way slabs  or  beams  can  be  expressed by (Ref. 
V-1.36): 

R ~ L ~  
T = -  r R'd 

where d = effective  depth of member 

R'= 2250 ft/sec 6 

(V-1.15) 

cp = percentage of tensile  reinforcement 
at  midspan 

To  account  for  burial,  the  period  for  the roof 
elements of rectangular  structures  must  be  modified 
in accordance  with  the  virtual  mass  discussed  in 
Section V-1.5.3. 

Since,  antisymmetrical  deformations  in  arches 
and  domes  are  largely  eliminated by the  resistance 
mobilized in the  soil,  the  primary  response  occurs 
in the  so-called  'breathing  mode."  The  period  for 
arches  Ta and domes  Td is defined by Eqs. V-1.16 
and V-1.17,  respectively, (Ref.  V-1.36): 

T = -  2nr 
a c  

Td = - 2nr 
C 6  

(V- 1.16) 

(V-1.17) 

where  c = a = dilatational  velocity  for  the 
material  (approximately  12,000  ft/sec  for  concrete 
and 16,700  ft/sec for steel).  All  other  terms have 
been  previously  defined. In this  case  also  the  period 
must be modified to  account  for  the  virtual  mass as 
discussed in Section V-1.5.3. 

If the  effect of virtual  mass  is  neglected and if 
it i s  recognized  that  for  structures of comparable 
span  the  quantity L2/d is  large  relative  to r ,  it  can 
be illustrated  that  the  natural  period of arches and 

domes  is  much  smaller  than  the  period of the  rec- 
tangular  element.  Also  it is apparent  that  for  prac- 
tical  structures  the  periods  are of the  order of tens 
of milliseconds  or  less.  These  periods  may  be  com- 
parable  with  the  rise  time of the  loading but generally 
they are  extremely  small  compared  to  the  effective 
duration of the  loading  from  nuclear  weapons.  The 
effect of r ise  t ime  is  known (for example  Ref.  V-1.37) 
but for  a  precise  analysis,  it is a very  difficult  quan- 
tity  to  generalize;  response is critically  dependent on 
the  ratio of rise  time  to  period.  Fortunately in design, 
however,  its  effect  can be taken  into  account rela- 
tively  easily  because  normally  the  design  must  con- 
sider  such a range of values  that  the  controlling  con- 
dition  is  obvious.  The  fact  that  the  duration of loading 
produced by nuclear  weapons  with  yields  currently 
considered  important  is  very  large  compared  to  the 
fundamental  natural  period of vibration  results  in 
relatively  simple  analyses of the  response of buried 
elements. With little  error  the  loading  frequently  can 
be considered a step  pulse of infinite  duration.  For 
this  case and representing  the  peak  magnitude of load 
or  stress,  on  the  element by p, the  plastic  resistance 
of the  element by q, (Fig. V-1.24) and the  ratio of the 
maximum  displacement  to  the  effective  yield  displace- 
ment  xy by 1-1, it may be shown (Ref. V-1.4) that: 

1 P =  I - -  
q 21-1 (V-1.18) 

To define  the  appropriate  elasto-plastic  resis- 
tance  function  requires  computation of the  resistance 
at yielding  and  the  deflections  at  yielding and at fail- 
ure.  These  computations  require  consideration of 
the  particular mode of failure induced in the  struc- 
tural  element by the  loading.  These  modes of failure 
and the  associated  deflections are discussed in the 
following  two chapters. 

It  should  be noted here,  however,  that  in  general 
an  arch  will  have a yield  resistance which is at  least 
an  order of magnitude  larger  than  the  resistance of a 
s lab of the  same  thickness  or  span.  The  yield  resis- 
tance of a dome  normally is  twice  that of an  arch of 
the  same  thickness and span.  Thus  an  arch  or  dome 
will  resist  forces of much larger  intensity  than a 
comparable  slab. 

Ductility. The effect of ductility of a structural 
element on the  force  it  can  resist  is  obvious  from a 
consideration of Eq. V-1.18. For a  given  resistance, 
the  larger  the  ductility  ratio p the  larger  the  force 
resisted.  Ductility  ratios  depend  directly on the 
mode of failure  induced  in a member  and upon the 
material  used  to  fabricate a structure. If buckling 
of outstanding  legs is prevented,  steel  can be more 
ductile  under many conditions  than  reinforced  con- 
crete. However as may be seen  from Eq. V-1.18, 
the  effect of ductility  decreases  very  rapidly  once  the 
ductility  ratio  becomes  large.  Thus if a mode of fail- 
ure  develops which implies a relatively  large  ductility 
factor,  the  difference  in  load  resisted by a  steel   or 
reinforced  concrete  structure  becomes  relatively 
insignificant. 
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Frequently  an  arch o r  dome,  especially if fabrica- 
ted  in  reinforced  concrete,  is less ductile  than  a  com- 
parable  slab  because  shells  are  subjected  primarily 
to  direct  compression  while  slabs are subjected  pri- 
marily  to  flexure.  However,  the  decrease  in  ductility 
is  subordinate in effect  to  the  increase  in  strength  for 
the  shell  compared  to  the  slab. 

V-1.5.3 Virtual  Mass 

Rectangular  Structures. The  unity of action  be- 
tween  the  structure  and  the  surrounding  soil  has been 
mentioned  frequently in the  preceding  discussion. One 
action of the  soil,  that of stiffening  the  structure,  was 
alluded  to  in  Section V-1.5.1; it  will be discussed in 
more  detail  in  the  following  chapter. Additionally the 
soil  adds  mass  to  the  structure,  and  it is this  added 
mass  which will be discussed  in  this  section. The 
mass of soil  which  must be accelerated  along  with  an 
element of a buried  structure  classically  is  referred 
to as  the  virtual  mass.  This  mass  can  have a signifi- 
cant  effect upon the  response of an  element. 

Although no theoretical  solution  exists which 
defines  the  virtual  mass of a structure  buried in 
soil,   there  are  several  means  for  estimating  its 
effect  based on empirical  data  from  the  response of 
buried  structures.  Two  basic  methods  have  been 
used  to  determine  this  parameter.  The  first,  and 
probably  the  more  reliable,  involves  consideration of 
the free vibration of an  element  after  the  load is no 
longer  acting  (Ref. V-1.17). For  this method an 
analysis  was  made of strain  and  deflection  measure- 
ments on simply  supported  steel  beams of varying 
stiffness  forming  the  roofs of buried  reinforced- 
concrete  boxes  tested on Operation Upshot-Knothole 
(Project 3.8).  The  roofs  in  three  separate  structures 
were  arranged  such  that  the  depth of burial  was 0.125, 
0.500, and 1.000 times  the  span of 8 ft.  Analysis of 
the  free  vibration  evidenced by these  roofs  indicated 
a period  consistent with the  stiffness of the  element 
alone  vibrating in its  fundamental  mode  and  the  total 
of the  mass of the  beam  and  the  entire  overburden. 
Consequently  the  fundamental  period  T  should  be 
modified by the  square  root of the  ratio of the  total 
mass  of the  beam  and  overburden  per unit of length 
m'  to  the  mass  per unit of length of the  beam  alone  to 
define  the  effective  period T': 

(V-1.19) 

It is  important  to note that  consideration of the 
apparent  period  manifest  in  the  free  vibration of 
these  elements  is  independent of the  magnitude of 
force  acting on the  member.  Therefore,  the  means 
of determining  the  virtual  mass  just  described  does 
not require  inferring  the  character of the  loading 
reaching  the  structure. In addition i t   i s  worthy of 
note  that for rectangular  structures  buried  in  soil 
the  maximum  depth of burial  has  equaled  the  span of 
the  element.  Furthermore,  the  structures  tested  in 
soil  were  constructed by cut-and-cover  methods. Yet 
for  the  specific  structures  cited  here, a later  test 
[Operation  Teapot (Ref. V-1.38)] revealed  that  the 

caliche  in  the  soil  at  Frenchman  Flat had largely  re- 
cemented  the  cover  above  the two deeper  structures. 
(The  cover  over  the  shallowest  structure  was  removed 
prior  to  this  test  to  repair  the  waterproofing of the 
roof.) In these  tests as well  it  appears  also  that  the 
virtual  mass  consisted of the  mass of the  beam  plus 
the  mass of the  entire  overburden.  Nevertheless,  it 
i s  doubtful that  the  relation  obtained  from  these re- 
sults would remain  unchanged  for  depths of burial 
significantly  greater  than  the  span  and  probably  for 
structures  in  soil  placed by tunneling  methods. The 
latter  condition  is  suspect  because of the  difference 
in  the  stress  state induced by tunneling  compared  to 
cut-and-cover  procedures.  Consequently  it would 
appear  unsafe  to  assume a virtual  mass which i s  
greater  than  that  implied by a  depth  equal  to  the  span 
for  beams  buried  to  depths  greater  than  the  span  until 
further  theoretical  or  empirical  results  justify  such 
an  assumption. 

Arches  and  Conduits.  A  second  method of 
estimating  the  virtual  mass  from  empirical  data 
involves a specification of the  forces  acting on the 
structure  and  the  time  variation of these  forces. A 
model of the  structure  also is assumed,  and  the 
response is computed  using  the  specified  forces. 
By t r ia l  and error  the  characterist ics of the  force  and 
of the  model are  varied  until a computed  response 
agrees  with that  observed.  This  procedure  has  been 
used  in  the  analysis of the  behavior of many struc- 
tures  tested in the  field  including  those  discussed 
above. For the  latter  structures,  detailed  instru- 
mentation  was  provided,  and  this  method of computa- 
tion  also  indicated  that  the  virtual  mass  consisted of 
the  total  mass of the  beam  plus  the  entire  overburden. 
The  fact  that  this  procedure  gives  results  identical  to 
those  obtained by considering  the  free  vibration  lends 
support  to  the  validity of the  tr ial   and  error  pro- 
cedure. Without this  support  the  trial  and  error 
process  is  questionable  since  theoretically  there  are 
an  infinite  number of assumptions which would pro- 
duce a similar  computed  response of a structural 
element. 

This  trial  and  error  procedure  was  used  in  an 
attempt  to  determine  the  virtual  mass  for  the  buried 
arches  and  conduits which  have  been included  in 
several  field  tests (Ref. V-1.34). In most  cases  the 
instrumentation  either  was  not  sufficiently  complete 
o r  the  records  were not of sufficient  length  to  allow a 
determination of the  period of vibration which occurred 
during  the  free  vibration. The analyses  assumed  that 
the  structures  were  subjected  to  the  surface  over- 
pressure  (the  airblast-induced  stress without attenua- 
tion)  and  that  the  response  occurred  only  in  the  breath- 
ing mode. In computing  the  period  consistent with the 
breathing  mode  a  virtual  mass  was  assumed which 
was  equal  to  the  average depth of burial of the  arches 
and  to  the  average  depth of burial  over  the  upper half 
of the  conduits  but, on the  basis of the  results of the 
beams, not greater  than  the  diameter of the  structure 
in  either  case.  Because of the  sensitivity of the  com- 
puted  response  to  the  magnitude  or  time  variation of 
the  assumed  loading,  these  computations  were  per- 
formed by assuming  values  for  the  maximum  response 
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and  computing  the  peak  overpressure  consistent  with 
these  values. In Ref.V-1.34 these  computations  were 
made both including  and  neglecting  the  effect of footing 
motion as described  in  Section V-1.5.2. These  com- 
putations  (summarized  in  Table V-1.1) indicated  that 
the  assumed  value of virtual  mass  was  reasonable 
since  the  computed  overpressures  corresponding  to 
failure  were  greater  than  the  observed  values  and 
none of the  structures  failed. The correction of the 
yield  strength  referred to in  the  footnote  to  the  table 
was  required  because  it  was  learned  after  the  analyses 
were  completed  that  the  yield  point of the  materials 
used  in  the  corrugated  metal  structures  was  approxi- 
mately 30,000 psi  while 40,000 psi  was  used  in  analy- 
sis.  The  correction  was  accomplished by taking a 
simple  ratio of yield  points  and  multiplying by the 
overpressure. A small   error  is caused  in  this  proc- 
ess  since  the  effective  duration of the  overpressure 
varies with the  overpressure. 

Additional  experimental  evidence  supporting  the 
conclusions  drawn  from  these  computations  was 
gained  in  non-destructive  tests  conducted on the 
arches and  conduits  in  Operation  Plumbbob (Ref. 
V-1.39). These  tests  were  conducted  after  the  nuclear 

operation,  and  they  employed both small high explo- 
sive  charges  and  mechanical  methods  for  deforming 
the  structures. The measurements of free vibration 
determined  from  strain  gages  and  accelerometers 
indicated a period  consistent with the  breathing  mode 
with a mass as described  in  the  discussion of the  pre- 
ceding  computations. 

Therefore  it  appears  that  the  effective  period of 
vibration  for  buried  arches  and  conduits  also  may be 
determined by application of Eq. V-1.19 if T i s  the 
period  for  the  breathing  mode  and  m' is the  mass of 
the  shell  plus  the  mass of the  average  overburden  per 
unit  length but not greater  than  the  shell  diameter. 
For  the  arches  and  conduits  there is  limited  experi- 
mental  evidence  to  indicate  that  the  average  over- 
burden  should not be  assumed  larger  than  the  diameter 
of the  shell. 

Domes.  The  only completely  buried  domes which 
have  been  tested  had  such  small  response  that  it is 
difficult  to  interpret  their  behavior.  However, by 
inference  from  experience  with  buried  arches,  the 
virtual  mass  for  a  dome  should  be  governed by a 
relation  similar  to  that  for  an  arch. 

TABLE V-1.1 COMPARISON OF COMPUTED OVERPRESSURE LEVELS WITH OBSERVED EXPERIENCE 
IN OPERATION PLUMBBOB 

Structure No. Weapon Overpressure  for Max. Observed  Overpressure  for 

Yielding  (Breathing Mode) No Failures  Shearing of Bolts 

Footings 
Immovable  Movable Movable 

and  Description Yield Failure by General  Overpressure, Failure by 

Footings  Footings Observed 

3 J a ,  b,  c  and  n---Buried 40 480 600 190 "- 
R/C  Semi-circular 
Arch---l'-O"  radius 

3.2e, j, and P Buried R/C 40 750 11 oob 136 -" 
Pipe 8"O" diameter 

3.2d and  h---Buried 10 ga. 40 1 goa 2 00 136  165a 
Corrugated  Metal  Pipe--- 
8""' diameter 

3.2a, b,  c, f ,  g, k, and  40 330a 400 153 450 
m---Buried  10  ga. 
Corrugated  Metal  "Cattle 
Passes"---2'-6"  radius 

3.3b---Buried 10 ga. 40 70a 75 56 SOa 
Corrugated  Metal  Semi- 
Circular  Arch without 
Stiffeners---l2'-6"  radius 

aCorrected for yield  strength but not for  effective  duration.  Correcting  the  effective  duration would result in 
a  somewhat  lower  value  for 40 kt. 

bA result  possibly  outside  the  range of applicability of the  theoretical  expression. 
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Lined Tunnels in Rock. For  lined  tunnels  for 
protective  construction  the  concept of virtual  mass 
currently  is  believed  to  be  basically  irrelevant  since 
it  seems  impractical  to  place a metal  lining  in  con- 
tinuous  contact with the  rock. Also rock  generally  is 
much  stronger  than  reinforced  concrete so that  use of 
such  construction would appear  to  provide no added 
safety  against  explosion  generated  loads  over  merely 
the  bare  rock  tunnel.  Current  concepts  for  the  design 
of protective  linings  in  competent  rock  therefore  in- 
clude  the  provision of a highly deformable  material 
between  the  face of the  rock  and  the lining. This 
deformable  material  normally would respond  with the 
lining;  however,  its  mass  generally would be so small 
that  it would cause  a  negligible  change  in  the  period of 
the  lining. 

V-1.6 DYNAMIC PROPERTIES OF STRUCTURAL 
MATERIALS 

It already  has  been shown that  the  behavior of 
structural  elenlents  depends  directly on their 
strength,  ductility,  and  natural  period of vibration. 
These  parameters  depend upon the  mechanical  prop- 
er t ies  of the  materials  used in the  construction. I n  
this  section  the  dynamic  properties of the  materials 
normally  used in construction,  steel  and  concrete, 
are  summarized. 

Engineering  materials  generally  behave  differ- 
ently  under  dynamic  loads  than  they do under  static 
loads.  Static  loads are  essentially  independent of 
time.  Distinctions  may be made  among  the  types of 
loads which v a r y  with time (Ref. V-1.21). Gradually 
applied  loads a r e  those which change  with  a  time  scale 
which is  measurable  in  seconds  or  longer:  even  these 
loads,  however,  may  exhibit  a  dynamic  effect. Rapidly 
applied  loads a r e  those  defined by a time  scale  meas- 
urable in milliseconds.  Finally,  impulsive  or  impact 
loads  are  those with a  time  scale which i s   l ess  than  a 
millisecond  and  may be of the  order of microseconds. 

V-1.6.1 Fundamental  Concepts 

Mechanical  properties of materials,  i.e.,  those 
which relate  the  various  deformations in a  material 
to  loads o r  stresses  are  generally  determined  from 
the  engineering  stress-strain  diagram, in  which the 
stress  is   determined by dividing  the  total load by the 
original  cross-sectional  area,  and  strain  is  deter- 
mined by dividing  the  change in length by the  original 
length of the  specimen. 

The  shape of stress-strain  diagram may be con- 
tinuous  and  unbroken as it  is  for  materials which 
have no distinct  yield  plateau.  Alun~inun~,  copper, 
and  concrete  are in this  group.  Some  heat-treated 
o r  work hardened  steels  are  also in this  category. 

The  shape of a stress-strain  diagram may be 
discontinuous with a distinct  yield point and  plastic 
region.  Standard  structural  alloy  steels  are in this 

category. In this  type of material ,   as  the load i s  
increased beyond the  so-called  elastic  limit, a s t r e s s  
level  is  reached  at which the  material  yields  and  this 
s t ress   increases  with the rate  of loading. Knowledge 
of the  amount of increase  in  yield point for  a  given 
type of dynamic  loading is  essential in the  design of 
structures for shock  loads. 

Materials which have  continuous s t ress-s t ra in  
diagrams  and  have no distinct  yield point (although 
they may at  very high strain  rates),  generally do not 
show an appreciably  different  yield  stress when 
loaded  rapidly. In these  materials  the  yield  stress 
o r   s t r e n e h  is frequently  defined as the  s t ress   corre-  
sponding  to 0 .2% permanent  set  (or  other  convenient 
strain),  and  this  stress  does not necessarily  increase 
with the  rate of loading. In fact,  for  cast  magnesium 
alloy  (Dowmetal H) the  yield  point  drops  appreciably 
when the  rate of loading is  increased ( R e f .  V-1.40). 

When the  load is increased beyond that  corre- 
sponding  to  yielding  eventually  the  ultimate  strength 
of material  is  reached which is  the  maxinnm  stress 
developed by the  material  before  fracture  occurs. 
The rate of strain  also  influences  the  ultimate 
strength of a material.  To  define  an  ultimate  factor 
of safety a knowledge of the  ultimate  strength of a 
material  for a given  dynamic  loading is  desirable. 
In some  materials,  such  as  concrete,  it   is  essential. 

Materials which exhibit  a  definite  yield point  in 
their  static  stress-strain  diagrams  may  have a meas- 
urable  time  delay  associated with the  initiation of 
plastic  deformations. In materials which have  a  con- 
tinuous  stress-strain  diagram without a  distinct  yield 
point a measurable  time  delay  has  generally not been 
observed. 

The  delay  time  for  the  initiation of plastic flow, 
while not significant for conventional  loads,  is  an 
important  property when the  loads  are  rapidly  applied 
because i f  the  duration of loading, or more  precisely 
the  time of maximum  response,  is  less  than  the  time 
delay,  the  material  will not yield. 

Critical  impact  velocity  is  also  an  important 
property of the  material when the  loads a r e  impulsive. 
Critical  impact  velocity  may  be  defined a s  the  velocity 
a t  which the  specimen  fractures  at  the point of impact. 
Theoretically  it  can be shown (Ref. V-1.40) that 

where vu = 

do/& = 

v =  lu,/? 
critical  impact  velociQ 

i s  the  slope of the  stress-strain 
diagram  and  a  function of 

density 

strain  corresponding  to  the  ulti- 
mate  strength of the  material 
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If the  impact  velocity  is less than  the  critical 
impact  velocity,  the  specimen  will  suffer  deformation 
but no fracture  will  take  place  immediately. At veloc- 
ities  above  the  critical  impact  velocity  fracturing  can 
be  expected at the  impacted  end.  This phenomenon 
has  been  studied  experimentally  (Refs. V-1.27 
and V-1.42). 

V- 1.6.2 Mechanical  Properties of Materials in 
the  Linear  Elastic Range 

At low levels of s t r e s s  or strain  materials  nor- 
mally  act  elastically. A material  is  elastic when i ts  
deformations  are  linearly  related  to  the  stresses  and 
are  also  reversible;  that  is, upon removal of the  load 
the  material  returns  linearly  to  its  original  state. At 
high levels of s t r e s s  or strain  all  materials  suffer a 
certain  amount of permanent  deformation. 

Some  important  mechanical  properties when the 
material  acts  elastically  are  the  modulus of elasticity 
E, modulus of rigidity G, and  the bulk modulus of 
elasticity K. These  quantities are related by the 
following  expressions: 

E 
= j o  

G = Z ( 1 + V )  
E 

K = m  
2G( l+v)  

and - = -  + -  1 1 1  
E 3G 9K 

(V-1.21) 

(V-1.22) 

where v = Poisson's  ratio. 

When a  material  is  deformed,  there  tends  to be 
an  increase o r  decrease in temperature. Under static 
loading  the  heat  manifested by the  change in tempera- 
ture  is  dissipated to the air nearly as rapidly a s   i t   i s  
generated.  This  condition  approaches  an  isothermal 
transformation  in which the  temperature of all   parts 
of the  material  is  kept  constant while the  loads do 
work on the body. 

On the  other hand  when a  dynamic  load i s  applied 
there would be  little  time  for  dissipation of heat.  This 
condition  approaches  an  adiabatic  transformation  in 
which no heat is allowed  to  enter o r  leave  any  part of 
the body. In reality  this  condition  may not be reached, 
since  time of loading is  finite;  however,  it  is  possible 
to  approximate it. 

The  bar shown in Fig. V-l .26a  is  subjected  to a 
compressive  force P. Figure V-1.26b shows  the 
variation of the s t ress  f with length L. Point A 
corresponds  to a condition  in which the   s t ress   i s  f 
and  the  length i s  L. Let  the  curve  designated  t 
represent  the  relationship  between f and L under  an 

L 

L 

FIG. P-1.26 CONDITIONS  AND NOTATION FOR THEORETICAL 
DERIVATION FOR STRAIN  RATE  EFFECT 

isothermal  condition  (static  load)  and  that  marked s 
represent an adiabatic  condition  (dynamic  load).  The 
increase in length, when s t r e s s  is reduced  to f - df, 
will  be  smaller  under  adiabatic  than  it  will  under 
isothermal  conditions. 

Using the  conditions shown  in Fig. V-1.26, 
Jeffreys ( R e f .  V- 1.43) derives  certain  relations  among 
the  elastic  constants, Eqs. V-1.23 and V-1.24. 

where 

where 

Et tvEt 1 BL 

ES 

- = 1 - - (- -) (V-  1.23) Cf A L a t  f 

E = modulus of elasticity  at  constant 
temperature  (isothermal) 

E = modulus of elasticity  at  constant 
entropy  (adiabatic) 

t = absolute  temperature 

v = specific  volume 

Cf = t (  a t )  = specific  heat  under  constant as 

f tension 

s = specific  entropy 

(*) = coefficient of linear  expansion 
f under  constant  tension. 

Kt tvKt 1 av 

KS 
- 1 - r(- -) 

2 

v a t  p 
" (V-  1.24) 

P 

K = bulk modulus  corresponding  to  the 
isothermal  compression or the 
static bulk modulus 

K = bulk modulus  corresponding  to  the 
adiabatic  compression  or  the 
dynamic bulk modulus 

C = t(*) is the  specific  heat  at  con- 

stant  pressure  and (v x ) is the 

coefficient of cubical  expansion  under 
the  constant  pressure p, with v the 
specific  volume of the  material. 

S 

P a t  P 1 BV 
2 

P 
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From Eq. V-1.23 it is  apparent  that E, i s  always 
greater  than  Et  unless  the  coefficient of linear  expan- 
sion  is  zero. It can be shown also  that  for  ordinary 
materials  the  term  tvEt/CfA (1/L 8L/at) is normal- 
ly less  than 0.01, and  therefore  experimen f a1 difficul- 
ties  make  it  impossible  to  measure  differences  be- 
tween  Et  and E, within  one  percent. 

For ordinary  solid  materials  the  term. 

tvKt 1 8 V  
2 

- (- -) in Eq. V-1.24, is less  than 0.04. cp v e t  p 

It can be shown (Ref. V-1.43) that  the  dynamic 
modulus of rigidity Gs is  equal  to  the  static  modulus 

It  should be emphasized  that  the  above  analyses 
a r e  only applicable  to  perfectly  elastic  and  reversible 
deformations.  Furthermore,  the  values of elastic 
constants  are  difficult  to  verify  experimentally. In 
fact  some  investigations  (Ref. V-1.44) have shown 
that  the  static  modulus of elasticity is greater  than 
the  dynamic  modulus of elasticity.  This  discrepancy 
is  believed  to  be  the  result of distinctly  different  pro- 
cedures  used  to  measure  load  and  strain in static 
and  dynamic  tests  and  the  inherent  inaccuracies in 
each  because as indicated by Eq. V-1.23, the  dynamic 
modulus of elasticity  must be greater  than  the  static 
value. 

In several  investigations  the  tangent or a  se- 
cant  modulus of elasticity  has  been  measured in 
materials  with no distinct  yield point or elastic  limit. 
Several  investigations  also have been carr ied out to 
determine  the  properties of concrete  under  dynamic 
loads in which the  variation of modulus of elasticity 
has  also  been  studied  (Ref. V-1.45). It can  be  stated 
generally  that  the  secant  modulus of elasticity in- 
creases  with  the rate  of loading;  however,  quantita- 
tively,  the  effect of ra te  of loading on the  modulus of 
elasticity  seems  to vary through  a  wide  range  and 
there  appears  to  be no common  base  for  comparing 
the  various  results. 

The  theory  discussed in this  section  is  an 
important  guide in understanding  the  deformations 
of a  material when the s t r e s s   i s  low. However,  it 
should be applied  judiciously. 

V-1.6.3 Dynamic  Strength  and  Behavior 

In studying  the  influence of rapid  loading on the 
behavior of materials  generally two types of investi- 
gations  have  been  employed.  The  first  type is called 
strain-rate  testing in which a constant  rate of strain 
is applied  to  each  specimen  and  its  rate  is  varied  be- 
tween  specimens.  The  other  type  is  generally  called 
load  testing in which a loading  pulse  with  a  sharp  rise 
i s  applied  to  a  specimen which has a very  small  mass. 

Results  for  Metals  from  Strain-Rate  Tests. 
Tests  on metals  have  covered  a  wide  range of strain 
rates  (Refs. V-1.40 and V-1.46-V-1.48). Data a r e  
available  for  the  variation of yield s t r e s s  of low car -  
bon steel when rate  of strain  varies  from in./ 
in./sec  to  more  than 102 in./in./sec. AS a rule  it  is 
impossible  to  find  a  common  base  for  comparing  the 
results of all tests.  The  size  and  type of specimen 
chosen  and  the  type of testing  machine  and  measuring 
device  all  influence  the  results.  Figure V-1.27 shows 
the  influence of the  rate of strain on the  yield  point of 
various  types of steel.  The  curve  corresponding  to 
Manjoine's tests  (Ref. V-1.46) is for low carbon  steel 
and  the  rate of strain  varies  from  in./in./sec  to 
102 in./in./sec. ~f we  assume 10-3 in./in./sec as a 
base  value of strain-rate  for  static  loads,  the  increase 
in yield  strength  for a rate of strain of 1 in./in./sec 
will be about 30%. E'igure V-1.27 also  shows  results 
of tests by Jones and Moore  (Ref. V-1.40) on SAE 1020 
and SAE 1045 steel.  The  range of variation of strain 
rate  was  considerably  smaller in the  latter  tests, 

Results  for  Steel  from  Load  Tests.  Several 
investigators  have  accumulated  data  for  load  tests 
(Refs. V-1.44 and V-1.49-V-1.51). In this  type of 
test a load causing  stresses in excess of those  nor- 
mally  corresponding  to  yielding,  is  applied  rapidly  to 
a specimen  which  has  little  mass.  First  the  strains 
increase  linearly  with  stress  during which time  the 
test  is  essentially  equivalent  to  a  strain-rate  test. 
The  strain  corresponding  to  the  applied  stress  may 
be approximated by dividing  the s t r e s s  by the  dynamic 
modulus of elasticity of the  material  (Ref. V-1.44). 
If the  peak  value of the s t r e s s  is equal  to or greater 
than  the  yield stress  corresponding  to  the  strain-rate 
the  specimen  will  yield without delay.  For  example 
reference  to  Manjoine's  curve  (Fig. V-1.27) illus- 
trated  that  the  yield  strength of mild  steel  is 42 ksi  
for a strain  rate of 1 in./in./sec.  Thus, if a peak 
s t r e s s  of 45 ksi  were  applied  to  the  specimen in 
about 1.5 msec which corresponds  to a strain  rate 
of 1 in./in./sec,  the  specimen would yield  immedi- 
ately. On the  other hand, if the  peak s t ress   i s  less 
than  the  yield stress  for  the  corresponding  strain 
rate  (less  than 42 ksi  applied in 1.5 msec  for  the 
preceding  example),  the  straining  will  stop  for  some 
finite  time  after  the load has  reached  its  peak  and 
before  yielding  begins.  During  this  delay  time  the 
specimen  will  support  a  stress in excess of that 
commonly  associated  with  static  yielding. 

Figure V-1.28 shows  results on ASTM A-7 
rolled  bars  obtained by Massard  (Ref. V-1.51). In 
this  figure  the  dynamic  yield  stress is plotted  against 
time  from  application of load  to  initiation of yielding 
(time  to  yield).  The  time  to  yield  for  conventional 
static  tests  may  be  taken as that  corresponding  to 
the  maximum  strain-rate  permissible  under  the 
ASTM Specifications.  Since in the  strain-rate  tests 
a base  value  for  the  strain-rate  representing  static 
conditions  was  taken as in./in./sec,  the  base 
value  for  time  to  yield in the  load  tests  may  be  taken 
roughly a s  one  second.  This, of course  assumes  that 
yielding  occurs  at a strain of 0.001 in./in.  For  the 
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FIG. P-1.27 EFFECT  OF STRAIN RATE ON YIELD STRENGTH OF MILD  STEEL 

TESTS BY MASSARD-  Loads  Applied  Very  Rapidly,  Then  Held  Conrtant. 
Data  Refer To Upper  Yield  Paint. 

0 0. I rq.  in. Specimen, Bar Stock,  Rimmed  Steel. 
0.1 rq.  in. Specimen, Plate  Stock,  Semi-killed  Steel. 

A 0.2  rq.  in. Specimen, Bar Stock,  Rimmed  Steel. 
A 0.2 % i n .  Specimen, Plate  Stock,  Semi-killed  Steel. 

IO" 

TIME TO YIELD, roc 

I 

FIG. p-1.28 EFFECT  OF  MANUFACTURING PROCESS AND SIZE OF SPECIMEN ON  DYNAMIC  YIELD STRESS FOR 
STRUCTURAL (A7) STEEL 
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larger  specimens,  Massard's  tests  indicate a de- 
pendence of the  dynamic  yield  strength on the  manu- 
facturing  process  used in making  the  steel.  For a 
particular  size of specimen or a particular  steel 
manufacturing  process  the  increase in strength  pro- 
duced by dynamic  load i s  definitely  supported. 

Figure V-1.29 shows  results of load tests on 
intermediate  grade (ASTM A-15) reinforcing  bars 
carr ied out by Keenan and  Feldman  (Ref. V-1.44). 
In this  figure  the  dynamic  yield  stress  is  also  plotted 
against  time  to  yield.  Three  bar  sizes  were  tested in 
this  investigation: Nos. 6, 7 and 9 .  This  figure  also 
contains  the  results  obtained by Clark  and Wood (Ref. 
V-1.50) which were  carried  out on  A-7 bars .  

Several  interesting  observations  can  be  made 
from  Fig, V-1.29. The  data  from  Clark  and Wood's 
experiments  indicate a static  upper  yield point for 
ASTM  A-7 steel which is  significantly  higher  than 
the  minimum  lower  yield point of 33 ksi  specified 
for  this  steel. Although there  can  be a marked  dif- 
ference  between  the  upper  and  lower  yield  points  for 
mild  steel,  this  difference  becomes  small for low 
strain  rates.  Thus,  for  Clark  and Wood's data  with 
times  to  yield of 1 sec or more  the  upper  and  lower 

yield  point  should  be  nearly  the  same.  The  difference 
between  the  measured  and  specified  values of yield 
point has  been  observed  frequently in the  past,  and a 
study of the  static  yield  point of s t ructural   s teel   i s  
presented in Ref. V-1.52. These  tests  represent 
3,974 individual  tests  sampling 33,000 tons of steel. 
A median  yield  point of approximately 38 ksi  for 
ASTM A-7 steel  was found. This  median value is 
quite  consistent with the  data  presented in Fig. V-1.29 
for A-7 steel.  Thus,  the  data by Clark  and Wood 
might  be  considered  indicative of the  median  behavior 
o f 7  steel  under  conditions of rapidly  applied  con- 
stant  stress.  

Since  the  minimum  specified  yield point for 
intermediate  grade  reinforcing  steel (ASTM A-15) is 
40 ksi  while  that for structural  steel (ASTM A-7) is  
33 ksi  it  should not be  surprising  that  the  tests on 
reinforcing  steel show strengths  usually  larger  than 
the  strengths of structural  steel.  However,  the  tests 
by Keenan and  Feldman on No. 6 bars  are generally 
in agreement  with  the  tests on structural  steel.  This 
could be a result of the  normal  variation in strength 
which might  occur  for a particular  grade of steel. 
Yet  the  quality of this  group of No. 6 bars  is some- 
what  suspect  since  the  specified  cross  sectional  area 
is  0.44 in.2 while  the  measured  value  was 0.51 in.2. 

Keenon And Feldrnan - lnterrnedlate  Grade Relnforclng Bors : 
0 No. 6 Bar,  Meosured Area = 0.51 sq. in. 
0 No 7 Bar ,  Meosured  Areo = 060 sq.  in.  

No. 9 Bar,  Meosured  Areo : 0 99 sq. ~ n .  
Loods Applled  Ropldly,  Then  Held  Constont. 

Clark And Wood- Anneoled Structural  Steel, 0 19 per cent C , 0 . 2 5  sq. ~ n .  Area, I in .  Gage Length. 
v Loods  Applled A t  Consfont Rote, Then  Held  Constont 

AI1 Doto Refer  To Upper Yleld Polnt, 

10-2 IO" 

TIME TO YIELD, sec 

I IO' 

FIG P-1.29 DYNAMIC YIELD STRESS  FOR STRUCTURAL (A7)  AND CONCRETE REINFORCING  (A15-INTERMEDIATE 
GRADE) STEEL 
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Although the  sizes of reinforcing  bars now are speci- 
fied by weight,  it is doubtful  that  this  particular No. 6 
bar would meet  the  specified  tolerances on  weight. 
The  remaining  results in this  study for the  larger 
bars  appear  entirely  reasonable.  Thus,  it  is  believed 
that  the  results  for  the  larger  intermediate  grade 
bars  indicate  that  the  magnitude of the  yield point 
which  might be expected  under  conditions of rapidly 
applied  loads. 

It  should  be  emphasized  that  for  steels  with a 
definite  yield  point  the  increased  strength  produced 
by dynamic  loads is a clearly  documented  phenome- 
non. Furthermore,  the  increased  strength  exists 
throughout  the  normally  plastic  region  until  work 
hardening  begins.  Thus,  the  effective  strength of the 
material  to  be  used  in  analysis  should  be  augmented 
always to  account  for  the  dynamic  effect. At the 
same  time  however  analyses  are  complicated by the 
fact  that a finite  time  is  required  to  initiate  yielding 
in  the  material.  This  finite  time  also  must  be  con- 
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sidered  in  analysis  for  it  is  possible  that  the  struc- 
tural  element  will not yield if the  time of maximum 
response  is  less  than  the  time  delay  to  yielding. On 
the  other hand in  design  this  complication  normally 
need not be  considered  because  the  loading  generally 
is not known with  sufficient  accuracy  to  specify with 
safety a particular  value of the  time of maximum 
response;  the  material  is  assumed  to  yield without a 
time  delay  in  this  case. 

*O0 
0 WATSTEIN,   BASE’  In /In/sec 

(LOW  STRENGTH  CONCRETE) 

v WATSTEIN, BASE cn./m/sac 
(HIGH STRENGTH CONCRETE) 

a AERAMS,  EASE 6 95 x IO+  In /w./ssc 
180- 0 BUREAU OF RECLAMATION 

BASE’ 6 95 a IO” l n i i n  /%e. 

Results  for  Concrete  from  Strain  Rate  Tests. 
Figure V-1.30 shows  the  data  from  three  seoarate 
investigations on compressive  strength of concrete 
(Ref. V-1.45). In this  figure  the  ratio of dynamic 
strength  to  static  strength  is  plotted  against  the  rate 
of strain. In the plot it is assumed  that  the  base  for 
static  loads  is 6.95 x  in./in./sec.  This  base  is 
consistent  with  the ASTM Standard. Although in the 
original  report by Watstein  a  base of in./in./sec 
was used  to  define a static  load,  the  data have been 
re-evaluated in terms of the ASTM Standard. 

B A S E .  6.95 a IO-5 In/in./lec 

I 
IO” I 

L 

IO’ 
RATE OF STRAIN, In./cn./sec 

FIG. P-1.30 EFFECT  OF  RATE  OF  STRAIN ON COMPRESSIVE STRENGTH OF CONCRETE 
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It should  be  noted  that  references  for  studies 
on the  dynamic  behavior of concrete in shear  have 
not  been located.  Thus,  it would appear  that no spe- 
cific  studies of this  phenomena  have  been  made. In 
the  dynamic  tests of reinforced  concrete  beams,  the 
members  were  designed  to  obtain  primarily  flexural 
behavior;  consequently  these  tests  do not allow  in- 
ferences  regarding  the  behavior of reinforced  con- 
crete  under  the  action of combined  flexure  and  shear. 
To  understand ful ly  the  behavior of reinforced  con- 
crete  members it is  necessary  to know the  dynamic 
behavior of plain  concrete in shear  and  reinforced 
concrete in combined  shear and flexure. 

V-1.7 METHODS OF STRUCTURAL ANALYSIS 

Although much of Chapter 4 is devoted  to  this 
subject,  the  concepts are briefly  summarized  here. 

V-1.7.1 Single-Degree-of-Freedom  System 

Most prominent  among  the  problems  associated 
with  analysis of structures  subjected  to  transient 
loads is  the  definition of the  mathematical  model 
which  represents  the  actual  structural  system. Once 
the  model  is  defined,  specification of the  parameters 
needed  to assess  behavior  becomes  relatively  simple. 
Behavior of exterior  elements  and  other  parts of 
buried  structures  can be interpreted by considering 
a single  degree of freedom  model of the  element. 

A  general  single-degree-of-freedom  system 
and  the  notation are shown  in  Fig. V-1.25. In most 
cases  the  important  loading  consists of the  force  p(t) 
applied  to  the  mass;  this  force is related  inherently 
to  the  force  acting on the  exposed  surface of the  ele- 
ment.  Sometimes  the  motion of the  support,  normally 
defined by the  acceleration y , can  be  important. Be- 
cause of the  linearity of the  differential  equation]  the 
effect of this  base  motion  can  be  combined  with  the 
force  acting on the  mass,  producing  an  effective  force 
of p(t) - my.  In measuring  the  more  significant re- 
sponse of a member  related to its  failure,  the  viscous 
damping  inherent in most  structural  materials  is so 
small that  it  can  be  neglected;  consequently  this  term 
has  been  omitted in the  differential  equation of motion 
shown in Fig. V-1.25. However,  damping is  an impor- 
tant  consideration in the  assessment of potential 
damage  to  equipment  and  personnel  and  for  rebound. 

It is convenient  to  measure  response in a 
dimensionless  form.  Normally  this  dimensionless 
parameter  is  taken as the  ductility  ratio F which is 
defined as the  quotient of the  maximum  displacement 
xm to  the  displacement  xy  corresponding  to  initial 
yielding of the  structural  element.  Usually  however 
computation of the  degree of damage  measured by p 
or  xm  is not as reliable as calculation of force  con- 
sistent  with a particular  value of ductility  ratio.  This 
results  from  the  fact  that  small  changes in the  magni- 
tude  or  variation  with  time of the  applied  force  can 
cause  disproportionate  changes in the  deflection of a 

structural  member.  Therefore,  the  most  significant 
parameters in measuring  behavior are  those  associ-  
ated  with  the  force  p(t) in Fig. V-1.25 (Refs. V-1.4 
and V-1.37). Here  also it i s  convenient  to  specify 
the  relevant  characteristics of the  force in a dimen- 
sionless  form: 

Peak  magnitude of force  pm is expressed 
as a ratio  to  the  effective  force qy causing 
yielding of the  element. 

Rise  time tr (the  effective  time  required 
for the  force  to  build-up  from  zero  to  its 
maximum) is expressed as a ratio  to  the 
effective  natural  period of vibration of the 
element  T. 

Effective  duration  td  (the  time  that  the 
force is effective in causing  initial  de- 
flection) is expressed as a ratio  to  the 
effective  natural  period of vibration of the 
element T. 

A  solution  to  the  single-degree-of-freedom 
system  for  tr  = 0 is shown in  Fig. V-1.31 which 
uses these  parameters. 

V-1.7.2 Multi-Degree-of-Freedom  System 

When the  structure or the  loading  is  very  com- 
plex, it frequently  is  necessary  to  consider  a  multi- 
degree-of-freedom  model in place of the  single-degree 
system. In underground  structures  consideration of 
multi-degree  systems  most often is  required in ana- 
lyzing  the  potential  damage  to  contents  and  equipment. 
Analysis of such  systems  is  more  complex  than  for 
single-degree  systems,  and  generalizations of the  be- 
havior  normally  cannot  be  made.  Thus,  each  problem 
must  be  considered  separately.  However,  a  method 
which often i s  useful,  consists of a modal  analysis 
wherein  the  eigenvalues  and  eigenvectors  for  the sys- 
tem  are  computed.  From  these  the  participation 
factors  for  each  mode  excited by the  force  are found, 
and  combinations of the  modal  responses  can  provide 
upper bounds or probable  values of the  solution  (Ref. 
V-1.37). 

V-1.8 REBOUND PHENOMENA 

As in the  preceding  section,  much of Chapter 4 
is  devoted  to  a  discussion of rebound  phenomena;  con- 
sequently,  this  subject  is only briefly  summarized 
here. 

When a  structural  element  is  subjected  to  a 
dynamic  load,  it first deflects in the  direction of the 
applied  load. At some  later  time  it  may tend to  de- 
flect in  an opposite  direction; i.e., rebound as a re-  
sult of strain  energy  stored in the  element.  For  short 
duration  loads on an  elastic  element not  in contact 
with  soil,  the  rebound  can  equal  the  maximum  pri- 
mary  deflection.  However,  for  loads of long  duration 
the  rebound  normally  will be less than  the  primary 
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displacement.  For  buried  structures  rebound  may 
not occur  since to deflect in a direction  opposite to 
the  load,  the  structure  must  overcome  the  resistance 
offered by the  soil;  definite  data  or  analyses  are not 
a s  yet available  for  this  case. 

From a detailed  study of the  response of a 
single-degree-of-freedom  system  with  an  elasto- 
plastic  resistance  function  subjected  to  the  effects of 
an  initially peaked triangular load (Ref. V-1.17) 
approximate  solutions to the  problem of rebound 
were  generated  (Fig. V-1.32). The  maximum e r r o r  

a rebound  resistance  which  is  approximately 20% 
greater  than  the  theoretical  value;  thus,  the  error is 
conservative,  and it should  be  emphasized  that  this 
e r r o r  is the  extreme. In most  cases of interest  the 
e r ror   i s  much smaller .  

Viscous  damping  can  significantly  reduce  re- 
bound. Reduction  factors  to  be  applied to the  values 
in Fig. V-1.32 are given in Table V-1.2. The  notation 
in Fig. V-1.32 and  Table V-1.2 is identical to that in 
the  preceding  section.  The  parameter 0, which is 
the  ratio of the  damping  present to the  critical  damp- 

associated  with  the-approximation  pictured  produces ing, has  been  added. 
- " 

'd 
T 
- 

FIG. X-1.32 DESIGN  CHART FOR ELASTIC  REBOUND 
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TABLE V- 1.2 REDUCTION  FACTORS  FOR DAMPED REBOUND 

0.125 0.25 0.5  0.75 td-tm 0.125 0.25 0.5  0.75 
T 

0 

0.5 

1 .o 

1.5 

2 .o 

2.5 

0 
0.025 
0.05 
0.1 

0 
0.025 
0.05 
0.1 

0 
0.025 
0.05 
0.1 

0 
0.025 
0.05 
0.1 

0 
0.025 
0.05 
0.1 

0 
0.025 
0.05 
0.1 

1 .o 
0.925 
0.853 
0.728 

0.875 
0.841 
0.808 
0.742 

0.875 
0.775 
0.745 
0.685 

0.875 
0.775 
0.725 
0.662 

0.875 
0.748 
0.714 
0.652 

0.875 
0.740 
0.706 
0.645 

1 .o 
0.925 
0.853 
0.728 

0.760 
0.736 
0.702 
0.644 

0.750 
0.665 
0.592 
0.512 

0.750 
0.665 
0.594 
0.475 

0.750 
0.614 
0.530 
0.450 

0.750 
0.614 
0.505 
0.438 

1 .o 
0.925 
0.853 
0.728 

0.588 
0.565 
0.540 
0.492 

0.500 
0.442 
0.394 
0.314 

0.500 
0.455 
0.402 
0.316 

0.500 
0.410 
0.336 
0.230 

0.500 
0.412 
0.340 
0.225 

1 .o 
0.925 
0.853 
0.728 

0.530 
0.515 
0.495 
0.455 

0.250 
0.221 
0.195 
0.160 

0.250 
0.261 
0.236 
0.192 

0.250 
0.205 
0.170 
0.116 

0.250 
0.220 
0.182 
0.125 

0 0.875 0.750 0.500 0.250 
0.025 0.735 0.572 0.380 0.190 

3'0 0.05 0.702 0.482 0.285 0.145 
0.1 0.641 0.430 0.168 0.085 

0 0.875 0.750 0.500 0.250 
0.025 0.732 0.570 0.380 0.195 

3*5 0.05 0.701 0.475 0.290 0.154 
0.1 0.640 0.420 0.165 0.092 

0 0.875 0.750 0.500 0.250 
0.025 0.731 0.535 0.354 0.175 

4*0 0.05 0.700 0.470 0.245 0.124 
0.1 0.639 0.420 0.124 0.064 

0 0.875 0.750 0.500 0.250 
0.025 0.684 0.446 * * 
0.05 0.623 0.391 * * 
0.1 0.510 0.294 * * 

*For  pm/qy 

Q) 

1 

1 + exp PTi 

JT 
as (td-t,)/T - m the  system  will not 
rebound  past  the  equilibrium  position; 
under  such  conditions  the  rebound is 
effectively  zero. 

v. 1 

v.2 

v.3 

v-1.1 
v-1.2 

V-1.3 

V-1.4 

V-1.5 
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CHAPTER V-2 

STRUCTURES BURIED AT SHALLOW DEPTHS 

Normally  underground  protective  structures 
buried  at  shallow  depths  are  placed by cut and  cover 
techniques,  or they  might actually  project  above  the 
surface with an  extensive  earth mound placed  over 
the  projection. Such structures would generally  be 
buried in  soil  because  there  is  little  advantage in 
terms of protection  gained in placing  a  structure  near 
the  surface in rock.  Furthermore, a shallow  buried 
structure would not ordinarily  be  located below the 
water  table if it could be reasonably  avoided. 

Consequently,  this  discussion is restricted  to 
consideration of structures  located in unsaturated 
soil  at  depths of cover  less  than 100 to 200 ft. Be- 
cause the structures  are  located in unsaturated  soil, 
for which the  seismic  velocity  generally is less  than 
2000 ft/sec,  they  are  subjected  primarily  to  the 
effects of airblast-induced  motion.  Thus,  the  average 
air-shock Lrelocity between  the point of burst  and  the 
structure  generally  will be greater by a  considerable 
margin than t h e  wave velocity in the  soil.  Supporting 
this  contention is the  fact  that  shallow-buried  struc- 
tures  become  economically  feasible  generally  for 
overpressures of the order  of 30 psi  at which the  air- 
shock  velocity has reduced  to  approximately 1900 
ftjsec  (Ref. V . l ) .  Other  means of protection a r e  
usually  more  desirable  for  overpressures in excess 
of perhaps 500 to 1000 psi. 

Structural  configurations  normally  constructed 
by cut-and-cover  techniques  include  rectangles 
wherein  all  elements  are  plane,  horizontal  arches  or 
cylinders,  vertical  cylinders,  domes and combinations 
of one or more of these  basic  configurations. A dis- 
tinction is made  between  horizontal  and  vertical 
cylinders  because  their  behavior  under  airblast- 
induced loading  depends upon orientation. The basic 
configuration  to be used  for a particular  purpose is 
normally  dictated by the  required  architectural  layout. 

V-2.1 STATIC LOADS 

Because  important  insight  into  the  behavior of 
structures  subjected  to  blast  loads  can  be  gained  from 
study of behavior  under  static  loads,  the  conditions 
associated with static loading are  summarized in some 
detail.  Also in some  cases,  as  discussed  later,  the  be- 
havior  under  static  loading may influence  the  dynamic 
loading reaching  structural  elements. 

The  magnitude of static load is influenced  pri- 
marily by the  type of soil  and  means of excavation, 
type of structure,  and  the  depth of cover.  These 

effects  are  related but in the following discussion 
each  is  treated  separately. 

V-2.1.1  Effect of Soil  Type  and  Means of 
Excavation 

At shallow  depths in  some  soils  with high cohe- 
sive strengths,  it is possible  to  obtain  stable  vertical 
cuts. 111 other  cases  vertical  slopes  may  be  employed 
if only intermittent  bracing is used. When vertical 
slopes  are  possible,  the  surface of the  cut  can  actually 
be  used as  the  outer  form  for  the  structure. In such 
soils  the  static load on vertical  surfaces of the  struc- 
ture  can be very  much  reduced  compared  with  the 
load when the  walls a r e  backfilled  after  completion 
of construction. 

When the  structure  itself  is  used  as a caisson 
to accomplish  the  excavation,  reductions in lateral 
forces on the  structure  also  can be expected when the 
soil  has  relatively high cohesive  strength. 

The  potential  planes of failure  which  might  de- 
velop in the  soil,  for  an  unbraced  trench  (Fig. V-2.11, 
explain why initial  reduction in lateral  force may be 
expected if the  final  structure  rests  directly  against 
the  surface of the  cut. If the  walls  of  the  cut  will 
stand  vertically  (that  is, when the  force  produced by 
the  overburden is less than  the  shearing  force  de- 
veloped  along  the  potential  plane of failure),  the 
strength of the  soil  is  already  mobilized  and  failure 
does not occur.  Thus,  the  walls of the  structure 
initially are  subjected  to  zero  static  load.  Vibrations 
induced  during  construction,  percolation of water 
through  the  surrounding  soil  and  other  conditions  will 
cause  the  walls of the  structure to gain  static  load 
with  time.  However,  these  loads  should not ordinarily 
exceed  the  lateral  stresses  associated  with  the  normal 
"active"  conditions. In developing  these  lateral  stres- 
ses arching  around  the  structure  may  also  develop. 
Possible  development of arching  during  the  redistri- 
bution of stress  makes  consideration of effects of co- 
hesive  strength on means of excavation  important. 

This is in contrast  to  the  conditions  where a 
relatively  large  cut  is  provided  and is backfilled  fol- 
lowing completion of the  walls of the  structure, a pro- 
cedure  frequently  required in non-cohesive  soils. Be- 
tween the  surface of the cut and  the  backfill,  zones  of 
weakness,  similar  to  the  potential  planes of failure in 
Fig. V-2.1, a r e  introduced  into  the  soil. If the  soil  is 
cohesive,  considerable  time  must  elapse  before  cohe- 
sion  is  re-established  along  these  zones of weakness. 
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Consequently in such  a  situation  the  walls of the  struc- 
ture  might  immediately be subjected  to  static  load 
consisting of lateral  stresses  associated  with  the  back- 
fill,  corresponding  to a situation  normally  between  the 
"active"  and  the "at rest"  conditions*. For cohesion- 
less  soils  the  empirical  "coefficient of earth  pressure 
at   rest" K , ,  the  ratio of horizontal  to  vertical  stress 
at  a  point,  ranges  from 0 . 4  to 0 .5  for  natural  deposits 
but may  be a s  high as 0.8 in carefully  controlled  back- 
fill  (Ref. V-1.32).  The  "coefficient of active  earth 
pressure" K , the  ratio of horizontal  to  vertical 
s t r e s s  when &e active  condition  exists,  is  defined 
for  cohesionless  soils  as: 

KA - tan' (45'. - z )  (V-2.1) 

where 0 = angle of internal  friction. 

Although sophisticated  procedures are available  (cf. 
Ref. V-1.32, p 147ff) to  define  KAfor  cohesive  soils, 
it is  suggested  that  it  may be sufficient  to  define  an 
effective  "coefficient of active  pressure" by defining 
a pseudo-value of angle of internal  friction (D from 
the Mohr envelope of rupture  (cf.  Fig. V-1.21) for 
the  cohesive  soil;  i.e.,  an  angle of internal  friction 
is chosen  which  reproduces  approximately  the  states 
of s t ress   for  a given  loading. 

At shallow  depths (of the  order of 25 ft)  the 
s ta t ic   s t resses  on vertical  surfaces of a  structure, 
irrespective of the  construction  procedure  used, 
frequently are  small  compared with the s t resses  
produced by blast.  For  large  depths  the  lateral 
static  stresses  are  significant  and  a  method  for 
estimating  their  magnitude on vertical  cylinders  is 
presented in Section V-2.1.3.  

The  static  loads  reaching  horizontal  surfaces 
depend upon the  characteristics of the  structure 
relative  to  the  soil  surrounding it and upon the  char- 
acteristics of the  backfill  placed  around  the  structure. 
If the  structure  is  rigid or is founded on relatively 
rigid  strata,  these  loads  can  be much larger  than 
would be the  case  for a flexible  structure.  Alter- 
natively if the  backfill  is highly compressible  com- 
pared  with  the  natural  soil,  these  loads  can  be  greatly 
reduced,  and  this  reduction  may be independent of the 
properties of the  structure.  The  dependence of the 
structural  loading on the  relative  motions between 
structure  and  soil  is  referred to generally as arching. 

*The  active condition corresponds  to a so-called 
state of plastic  equilibrium  where  the  soil  has 
moved establishing  shearing  forces  along  a  plane of 
potential  failure which maintains  equilibrium. "At 
rest" condition re fers  to  the  case  where no move- 
ment  has  occurred in the  soil. 

,-Ground  Surface 

/ 
1 
I 

Y I  I '" 
I 

Sides O f  Cut 
I '  
I -Potential  Plane 

=r 
I Of Failure 

L Structure 

$ = Angle Of Internal  Friction 

FIG. P-2.1 DEVELOPMENT OF STATIC  LOADS ON BURIED 
STRUCTURES 

V-2.1.2 Arching 

Natural  arching of deformable  media  was  prob- 
ably  first  recognized as a  practical  problem in the 
design of grain  bins  (Ref. V-2.1).  This  recognition 
resulted  from  observations  that  the  pressures on the 
floor of a  grain bin were much smaller  than would be 
implied by the  weight of the  grain. At the  same  time 
the  vertical   stresses in the  walls of the  bins  were 
much  higher  than  expected. A similar  problem  was 
recognized  later by foundation engineers.  Despite 
early recognition,  the  mechanism of formation of an 
arch in granular  media  still  is not fully  understood 
although  studies by Terzaghi  (Refs. V-1.32, V-2.2- 
V-2.4) have  given important  insight  into  the  static 
problem. 

In general,  arching  refers  to  the  situation in 
which  the s t ress  in a body of soil  is  carried  through 
a portion of the  soil by the  formation of a structural 
arch in the  soil.  Arching  develops  most  frequently 
when a structure  or  structural  element  buried in soil 
tends  to  move away from  the  soil it supports. When 
this  occurs,  the load above  the  structure,  under  cer- 
tain  conditions, may continue  to be supported by the 
formation of an  arch in the  soil,  which  carries  the 
load beyond the  structure  or  to  the  less  deformable 
par ts  of the  structure;  thus,  reducing  the load car-  
ried by the  deformable  parts of the  structure. A 
phenomenon called  negative  arching  also  may be in- 
ferred  from  the  evidence  available,  Negative  arching 
results when a structure  remains  relatively  station- 
ary while  the  surrounding  soil  moves  past  it,  the 
moving soil  causing an increase in force on the 
loaded  face of the  structure. 
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In grain  bins  the  conditions  producing  the  arch- 
ing are  apparent;  the  walls of the  bin are relatively 
rigid  and  shearing  forces  can  develop  between  the 
grain  and  these  walls.  These  forces in turn  form  the 
reactions  for  an  arch  which  develops in the  grain as 
a result of the  inherent  internal  friction.  The  inherent 
internal  friction of granular  soils  can  produce  similar 
conditions when an  element  tends  to  move  relative  to 
surrounding  elements of soil. A formal  attempt  to 
account  for  such  behavior in soil was done by Marston 
(Ref.  V-2.5).  Experimental proof that  soil  can  develop 
an  arch  above a yielding  surface  was  illustrated  con- 
clusively by Terzaghi's  classic  trap  door  experiments 
with  dry  and  saturated  sands  (Ref. V-2.3). 

In Ref. V-2.5 is  presented  an  analytical  study of 
arching  including  limited  experimental  validation of 
the  theory.  Four  conditions a r e  postulated (Ref.V-2.5) 
which are  summarized in Fig. V-2.2. Although cir-  
cular conduits  such as water  mains are specifically 
illustrated,  the  theory  neglects  the  actual  characteris- 
tics of the  buried  structure  except  to  note  that  the 
structure is stiffer  than  the  soil  it  replaces.  The 
theory  defines  the  total  vertical  load P which acts  
on a plane  tangent  to  the  crown of the  cylinder  buried 
in granular  (cohesionless)  soil. In the  associated 
experimental  studies  circular  pipes  were  employed, 

For  the  complete  ditch  condition  (Fig. V-2.2a) 
with a rigid  structure on a rigid  foundation,  the  back- 
fill in the  trench  tends  to  move downward relative  to 
the  original  sides of the  trench. A s  it does  shearing 
forces  develop which support  a  part of the  backfill 
relieving  part of the  force on the  structure in the 
sense  that  the  conduit  does not have  to  support  the 
entire  overburden.  The  amount of relief  depends on 
the  effective  angle of internal  friction of the  backfill 
0' and of the  original  soil cp and  the  effective  normal 
stress  across  the  potential  planes of failure  (the  sides 
of  the  original  trench).  The unit weight  of  the  soil is 
w . Cohesion  can be considered  separately or included 
in the  definition of the  effective  angle Of internal 
friction. 

For  complete  ditch  condition with 
duit on a rigid foundation (Fig. V-2.2a), 

wb2 1 - e -ah 

'dr = d 

a rigid con- 
P = Pdr: 

(V-2.2) 

where 

and 

a =  2K tan cp' 
bd 

sin (0 K =  tan'cp + 1 - t a n y  - 
tan'cp + 1 + tancp + sin q 

For a complete  ditch  condition  (Fig. V-2.2a) 
with a flexible  structure  or a rigid  structure on a 
flexible  foundation  and  with  the  natural  soil  along  the 
sides of the  ditch having the  same  stiffness as the 
structure  and  soil  surrounding  it, P = P&: 

-ah 

2K tan cp' 
'df = bcbd 1 - e  (V-2.3) 

Negative  arching  can  occur  statically  whenever 
the  structure  and  soil  above  it  remains  stationary 
while  the  soil  to  the  sides of the  structure  tends  to 
move  downward.  Alternatively  negative  arching  can 
develop if a structure,  such as a footing, is forced 
into  the  soil.  Perhaps  the  most  obvious  example of 
negative  arching  occurs when a structure  is  placed 
on natural  ground  and a fill is placed  over  it  (Fig. 
V-2.2b). Normally  the  structure  is  stiffer  than  the 
backfill.  Consequently  the  vertical  column of soil 
including  the  structure  generally  is  more  stiff  than 
adjacent  similar  columns of soil  alone.  The  adjacent 
columns of soil  deform  more  than  the  column  includ- 
ing the  structure  thereby  producing  shearing  forces 
which act downward on the  soil  above  the  structure. 
A s  a result  the  structure  carries a load  which is 
larger  than  the  force  implied by the  overburden. In 
this  case  the load P = P is 

P 
2 ebh - 1 

P ZK tan cp' = Wbc (V-2.4) 

where 

b =  2K tancp 

bC 

To  distinguish  between  complete  ditch  and 
complete  projection  conditions  the  concept of the 
plane of equal  settlement is introduced.  This is the 
plane  in  the soil above which the  settlement  in  the 
column of soil bounded by vertical  planes  tangent  to 
the  sides of the  structure is equal  to  the  settlement 
of the  columns of soil  adjacent  to  the  one  including 
the  structure  (Ref. V-2.5). For  the  complete  ditch 
condition  the  plane of equal  settlement is below the 
structure; it is above  the  surface of the  backfill 
placed  over  the  entire  area  including  the  structure 
for  the  complete  projection  condition. When the 
incomplete  ditch or projection  conditions  develop,  the 
plane of equal  settlement falls between  the  structure 
and  the  surface of the  ground.  Whether a ditch or 
projection  condition  develops  depends upon the 
direction of settlement  between  the  columns Of soil 
of interest: if the  column  including  the  structure 
settles  downward  relative  to  the  adjacent  columns  an 
incomplete  ditch  develops  (Fig.  V-2.2~);  the  reverse 
direction of settlement  produces  the  incomplete  pro- 
jection (Fig, V-2.2d). Before  the  location of the 
plane of equal  settlement  and  the  direction of settle- 
ment  below  this  plane  can  be  determined,  the 
deformation  characteristics of the  structure, Of the 
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backfill  and of the  soil on which the conduit is placed 
must  be known. A  semi-empirical  procedure  for 
selvers  or  water  mains with conventional  bedding 
(special  backfill) i s  suggested in Ref. V-2.5 for 
roughly  evaluating  these  deformational  characteris- 
tics:  the  Boussinesq  solution  (cf.  Section V-1.3.1) is 
suggested  for  computing  displacements in the  soil, 
and  upproximate  procedures  are  mentioned  for  de- 
termining  displacements in conventionally bedded 
structures. A qualitative  discussion of relative 
displacen~cnts  for  structures without conventional 
bedding is  presented in Section V-2.1.3. 

If the height of equal  settlement  can be esti- 
mated  for  a  particular  case  the  static  load P = P. is: 

where  the  positive  signs  apply  to  the  incomplete  pro- 
jection  condition  and  the  negative  signs  apply  to  the 
incomplete  ditch  condition. 

For  the  complete  ditch  condition,  the  backfill 
placed in the  ditch  forms an arch  whose  abutments 
a r e  the  sides of the  ditch  and  positive  arching  occurs. 
On the  other hand for  the  complete  projection condi- 
tion,  negative  arching  develops  since  the  shear  forces 
acting on the  column of soil  immediately  above  the 
conduit augment  the  force  imposed by the  weight of 
material.  Intermediate  cases  can  produce  either 
positive  or  negative  arching  depending upon the  direc- 
tion of the  shear  forces shown in Fig. V-2.2. 

Arching is also  produced by deflection of the 
entire  structure  or of par ts  of the  structure  such 
that  an opening tends  to  develop  between  the top of 
the  structure  and  the  soil. In Terzaghi's  initial  ex- 
perin~ents  (Ref.  V-2.3) an  actual  opening  was  intro- 
duced by renloving  a  portion  from  the  bottom of a box 
containing  sand. It was found that only a  volume of 
sand  approximating  a half cylinder with a diameter 
equal  to  the  smaller  span of the opening dropped 
through  the  "trap  door, " and  all  sand  above  this half 
cylinder  remained  essentially  stationary.  Thus,  an 
arch  across  the opening must  have  formed in the 
sand.  Complementing  these  trap  door  observations 
Terzaghi  placed  a  flexible  menlber  across  the open- 
ing and  deflected  it away from  the  sand. A nlininlum 
load approximately  consistent with the weight implied 
by the half cylinder of sand which fell  through  the 
open "trap  door"  in  the  preceding  case  was  obtained 
at  a  deflection of l " 7 3  times  the  smaller  span.  The 
load observed  was found to be independent of the 
depth of sand  above  the  structure (if this depth i s  
greater  than one or  two times  the  relevant  span of 
the  Structure)  for  depths  less  than  approxinlately  five 
times  the  spau.  For  greater  depths  the load on the 
Structure  increased in proportion  to  the  overburden. 

Terzaghi  also found that  after  the  arch  was 
established, it was not disturbed by subsequent  per- 
colation of water  through  the  sand.  These  tests  indi- 
cated  additionally  that  vibrations  (presumably of 
small  amplitude  and  frequency) did not destroy  the 
arching  action. 

If Terzaghi's  classic  trap  door  experiments 
(Ref. V-2.3) a r e  evaluated in te rms  of the  preceding 
discussion, a deflection of the top surface of the 
structure of the  order of one  percent of its  span 
would produce  a height of equal  settlement  equal to 
approximately  five  times  the  span  and  the  overburden 
above  the  height of equal  settlement would be  resisted 
by the roof of the  structure. 

Another  manifestation of arching  is  exhibited 
in the  data  presented in Ref. V-2.6. Here  a  series of 
static  and  dynamic  tests of gages  embedded in a ure- 
thane  rubber compound (Hysol 8530/CH2) and in clay 
were conducted.. The  static  and  dynamic  measure- 
ments were compared in each  case  to  the  gage  re- 
sponse  produced by a i r   p ressure  applied  to  the 
sensing  element  (diaphragm) of the  gage.  Also  the 
effects of gage  orientation  and of relative  dimensions 
of the  embedding  cylinder  to  the  dimensions of the 
gage  were  investigated.  For  this  discussion  the 
ser ies  of static  tests  using Hysol to  study  relative 
dimensions  are most interesting.  For  the two s n n l -  
lest  depth  ratios  (height of Hysol above  the gage to 
diameter of gage which was 518 in.).  the  gages  re- 
corded  stresses  less than the stress  applied  to  the 
end of the  specimen, and for  greater  depth  ratios, 
s t resses  which  were  greater  than  the  applied  stress. 
The amount by which the  recorded  stress  exceeded 
the  applied stress  increased  nearly  uniformly  with 
t h e  increase in depth  ratio up to  the  largest  value of 
6 .1  used  (Fig. V-2.3). This is consistent  with the con- 
cept of height of equal  settlement  because if this 
height falls  within  the  material  above  the  structure 
(gage  in this  case)  the  stress on the  structure in- 
creases  in proportion  to  the  overburden  or  to  the sur- 
charge.  The  observation that the  smallest  depth  ratios 
produced  measured  stresses  less than the  applied 
s t r e s s  does not agree with  this  concept. However. 
for  the two smallest  depth  ratios.  0.20 and  1.3, the 
discrepancy  could  be  attributed  to  a  different  distri- 
bution of s t r e s s  in the specimen.  This  distribution 
could be  caused by the  shear  acting  along  the top and 
bottom of the  embedding  cylinder  causing  a  restraint 
to  the  lateral  deformation of this  cylinder.  a  conten- 
tion  supported by the  marked  dependence of s t r e s s  on 
the  diameter of the Hysol (Fig. V-2.3): the  larger  the 
diameter,  the  smaller  the  stress  recorded by the  gape. 
Such action  has been observed many times in static 
axial  compression  tests  especially  where  relatlvelv 
large  strains  occur.  This  action could cause  per- 
turbations of the s t r e s s  field in the  viclnitv of the 
gage if the  gage is located  near  the  loaded  surface. 

On the  other  hand,  for  the  type of gage  used 1 1 1  

these  static  tests.  significant  arching of the h t d  
across  the  sensitive  element of the gnge  could o c c u ~  
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especially  for  the  smallest  depth  ratio (0.20) wherein 
the  diameter of the  cylinder of Hysol was  equal  to  the 
diameter of the  gage.  The  sensing  element  consisted 
of a thin brass  diaphragm  soldered  across  the  end  of 
a relatively  rigid  steel  right  circular  cylinder. As 
the  diaphragm  deflects  under  the  applied  load,  the 
load  may be transferred  to  the  relatively  rigid  wall 
of the  cylinder.  However,  the  dome of arching found 
in Terzaghi's  experiments could  not form in the  Hysol 
since  the  thickness of material  above  the  diaphragm 
was only 20% of the  diameter.  Here  the  dome  probably 
formed  partially in the Hysol  and partially in the  plate 
used  to  distribute  the  load  across  the  surface of the 

specimen. Such action  could  be  enhanced by the  con- 
fining  effect  produced by shear on the  face between 
the loading plate  and  the  specimen  mentioned  above. 

From  the  foregoing  discussion  it  appears  that 
static  arching is a  complex  function of the  deflections 
of the  structure,  the  stiffening  effect of the  structure 
on the  surrounding  medium  and  the  cohesion  and  inter- 
nal  friction of the soil.  Precise  formulation of the 
mechanism involved does not appear  to  have  been 
accomplished  although  procedures  adequate  for  static 
design  have  been  advanced (Ref. V-2.4).  
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V-2.1.3 Structural  Type 

A qualitative  effect of structural  type on the 
static  loads  reaching  the  structure is implicitly  in- 
cluded in the  theory  discussed in the  preceding sec- 
tion  (Ref. V-2.5) .  However, no direct  quantitative 
data are given in Ref. V-2.5 for  estimating  the  defor- 
mational  characteristics of structures  located  directly 
in natural  soil.  These  deformational  characteristics 
can  be  measured by the  compressibility of the  struc- 
ture  relative  to  the  soil  replaced,  yet  the  compressi- 
bility  depends on the  load  reaching  the  structure which 
in turn  depends on the  compressibility.  Mutual  depen- 
dences of this  type  suggest a tr ial   and  error  process 
in which a load is assumed  and a compressibility 
computed  from  which a new load is computed. Yet 
computations of the  height of equal  settlement  for a 
given  structure  is a particularly  difficult  problem 
since  it  depends both  on the  characteristics of the 
structure  and on the  characteristics of the  surround- 
ing soil. At the  moment  quantitative  values  related 
to  either of these  characterist ics  are not defined, but 
certain  qualitative  observations  can be made. 

Conventional  rectangular  structures  can  de- 
velop  the  incomplete  ditch  condition  (Fig.  V-2.2~) 
since  parts of the  roof  (slabs)  will  be  more  flexible 
than  other  parts  (beams  and  columns);  thus  the  slabs 
deflect  more  than  the  beams  and  columns  causing a 
reduction in load on the  more  flexible  parts  with 
corresponding  increases on the  more  rigid  parts. 

Arches  and  domes are inherently  more  flexible, 
in  flexure  at  least,  than  rectangular  structures  with 
the  same  plan area and  proportioned  for  the  same 
loads.  Thus,  arches  and  domes  can  deflect  locally 
a sufficient  amount  to  force  the  static  loads  to  assume 
more  uniform  distribution.  Furthermore  the  geomet- 
rical  configuration of arches and  domes coupled with 
their  inherent  flexibility  causes  an  arch  or  dome  to 
exist in the  soil;  this is especially  apparent if it is 
recognized  that  the  normal  slopes of the  cuts  made  to 
construct  the  structure are at  an  ideal  angle  to  act as 
abutments of an  arch  formed in the  backfill  over  the 
structure.  From  this  consideration  alone  it would 
appear  that in most  cases  the  theory (Ref. V-2.5) 
summarized in the  preceding  section would constitute 
a lower bound for the  amount of static  arching  to be 
expected  over arches and  domes. 

For  the  vertically  oriented  cylinder  the  hori- 
zontal  force  produced by static  load  can  significantly 
influence  the  behavior  since  at  large  depths  the  dead 
load  can be even  larger  than  the  dynamic  load.  From 
formulas  developed by Terzaghi  (Ref. V-2.4) the 
stress  distribution  along  the  height of the  surface of a 
flexible  vertical  cylinder  can  be  related  to  the  stress 
at  an  infinite  depth in dry  granular  soil by assuming: 
(1) that a condition of plastic  equilibrium  exists in the 
soil in the  vicinity of the  cylinder;  and  (2)  that  the 
tangential   stress in the  soil is nearly  equal  to  the 
vertical   stress.  The  relation  between  these  stresses 
(Fig. V-2.4) has  the  form: 
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FIG. Y-2.4 HORIZONTAL  STATIC STRESS DISTRIBUTION AGAINST 
VERTICAL  CYLINDER 

(V-2.6) 

where  pz = horizontal stress at  depth  z on a 
cylinder  with  radius r 

p = horizontal   stress  at  an infinite  depth. 
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The  horizontal stress  at   an infinite  depth  can  be 
formulated in terms of the unit weight of soil  w  and 
the angle of internal  friction cp. These  relations are 
shown  in Fig. V-2.5 which is an  extension of a graph 
presented in Ref. V-2.4. These  stresses,  however, 
depend  greatly on the  construction  procedures,  and 
should not be  used  where  the  conditions of deforma- 
tion  during  construction are not consistent  with  the 
assumption of the  theory; i.e., the  sand in the  vicinity 
of the  shaft is in a state of plastic  equilibrium  and 
that  the  shaft  lining is relatively  flexible. 

V-2.1 .4  Moisture Content 

An additional  problem which frequently  must  be 
considered as the  depth of burial  increases is the 
position of the  water  table in the  soil.  The  depth  to 
the  water  table  may  vary  seasonally,  and  it is desir- 
able  to  locate any buried  structure  above  the  water 
table. When a buried  structure is constantly  sub- 
merged  the  provision of effective  waterproofing  may 
prove  to  be  the  most  difficult  practical  problem  to be 
solved. Additionally the  static  loads in saturated 
soils  are  generally  larger  than  those in non-saturated 
soils, particularly  for  vertical  surfaces of a structure, 
because  the  stresses  produced by water  pressure are 
hydrostatic  and  increase  linearly  with  depth below the 
water  table.  The  stresses, in addition  to  the  water 
pressure,  caused by the  submerged  soil  normally are 
small  in  comparison  to  the  pressures induced by the 
water. 

V-2.2 LOADS PRODUCED BY BLAST 

V-2.2.1 Effect of Structural  Type 

As  discussed  in  Section V-2.1.2 the  amount of 
arching  appears  to  depend  primarily on the  com- 
pressibility of a structure  relative  to  the  compress- 
ibility of the  soil  replaced by the  structure. Addi- 
tionally,  arches  and  domes  geometrically  force  the 
soil  above  the  structure  to  form  an  arch  around  the 
structure for static  loads; a similar  condition  should 
also  exist  for  blast  loads.  Consequently,  the  amount 
by which the  blast  load  acting on the  surfaces of a 
structure  is  reduced,  can  be  influenced by the  geo- 
metrical  shape of the  structure.  However,  there are 
insufficient  data  to  indicate  clearly what effect  the 
shape of the  structure  has on the  loads  acting on it. 

An attempt  was  made  (Ref. V-2.7) to  provide 
some  insight  into  the  effect of the  structural  shape 
on the  stresses  acting on a buried  structure  and  the 
s t resses  in the  medium  adjacent  to  the  structure. 
The  conditions  assumed  are  summarized in Fig. 
V-2.6.  A complete  derivation  is  given  (Ref. V-2.7) 
based on the following assumptions: 

(1) The  circumferential  strain in the  medium 
in  contact  with  the  structure is equal  to the 
circumferential  strain in the  structure. 

(2) The  medium i s  in a state of one-dimensional 
strain; i.e., only  strains  perpendicular to the 
ground surface exist. 

ANGLE OF INTERNAL FRICTION (+), dag- 

FIG. P-2.5 MAGNITUDE OF HORIZONTAL  STATIC STRESS  ON 
CYLINDER  AT  INFINITE  DEPTH 

P, 

FIG. P-2.6 THIN  LINER  IN  HOLE  IN SOIL MASS 
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TABLE V-2.1 STRESS AND STRAINS AROUND LINED HOLES IN ELASTIC MEDIA 

Stress  or  Structural  Configuration 
"Strain" 

Ratio  Vertical  Cylinder  Horizontal  Cylinder  Sphere 

V __ 
1 - v  

1 1 

I + Y  
1 

1 - v  1 - v  
- + Y  

1 Y 
1 - v  l + i J  -+"--- 

P 
2 - 2  

PO 

(3 -$) 
2 

PC 

PO 
" 2 v  

(3)  The  cylindrical  liner is in  a state of plane 
strain;  i.e.,  the  longitudinal  strain  vanishes 
parallel  to  the  axis of the  cylinder. 

(4) The  spherical  liner  is in a state of plane 
s t ress ;   i .e . ,  the  radial  stress  vanishes. 

( 5 )  The  vertical  component of s t r e s s  in the 
medium  at any  point is  py , including  the 
effects of attenuation  with  depth. 

Results of this  study are  summarized in Table  V-2.1 
where  the following notation i s  used: 

pII = vert ical   s t ress  in medium  at  depth y in- 

po = horizontal  radial  stress in medium at  

cluding  effects of attenuation 

large  distances  from  structure;  for  prac- 
tical  purposes a large  distance  might  be 
of the  order of four  times  the  radius 

pa ~ radial  stress  acting  across  the  structure- 
soil  interface 

pb = circumferential  stress in liner 

pc - circumferential  stress in medium  adja- 
cent  to  liner 

E = circumferential  strain in medium or  
lining at  structure-soil  interface 

E = modulus of elasticity of medium 

v = Poisson's  ratio of medium 

E = modulus of elasticity of liner 

u = Poisson's  ratio of liner 

- 

- 

1 - 5  E r -  2 
v =  - relative  stiffness of 

1 - v 2  E t  
medium  and  liner 

r = radius of liner;  radius of great  circle for 
spherical  liner 

t = thickness of liner. 

The  relations  summarized in Table V-2.1 a r e  
believed  to  represent  qualitatively  the  distribution of 
s t r e s s  and displacements (as measured by the  strain 
E since,  for  the  conditions  considered,  radial  dis- 
placement  equals re) for  buried  cylinders  and  spheres 
under  dynamic  loading. It is  restricted  to  dynamic 
loading  primarily  because  the  soil  under  these  loads 
probably  does not have the  time  to  creep  significantly 
or experience  sizable  plastic  deformations. 
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Symmetrical  and  Unsymmetrical  Components 
of Loading. It is  apparent  that  the  soil  surrounding a 
buried  structure  simificantlv  stiffens  it. If a  suffi- - 
cient  amount of soil  cover  over  the  structure  is  pro- 
vided,  the  structure  will not deform  antisymmetrically 
even though the loading may be highly antisymmetri- 
cal  during  the  envelopment. When a  structure  is  com- 
pletely  exposed,  pronounced  antisymmetry in loading 
develops,  and  the  over-all  structure  is  subjected  to a 
net  force  which  acts in the  direction of shock  propa- 
gation.  However,  for  buried  structures  this  transla- 
tional  force  acts on the  soil  and not directly on the 
structure. If the  extent of the  soil  cover  over  the 
structure  is  sufficient,  the  forces  reaching  the  struc- 
ture  can  be  mitigated by two primary  effects:  (1) The 
soil  cover  effectively  streamlines  the  structure  re- 
ducing  the  drag  coefficient*;  and  (2)  forces  acting on 
the  surface of the  soil  can  be  partially  resisted by 
shear  developed in the  surrounding  soil  mass  before 
reaching  the  structure. 

These  effects  are  illustrated  qualitatively in 
Fig. V-2.7. Here, only the  forces on the  windward 
face  are  illustrated.  However,  a  similar  effect  de- 
velops on the  leeward  face of the  soil  cover  except 
that no reflected  pressures  develop and the  side-on 
overpressure  acts in a  direction  opposite  to  the  drag. 
Although shock  tube  studies  apparently have  not de- 
fined  the  variation in reflection  coefficientt  with  angle 
of incidence  for  all  angles of incidence**,  it is appar- 
ent  that  the  reflection  coefficient  becomes  small  as 
the  slope of the  soil mound (tan CY in Fig. V-2.7) be- 
comes  small.  For (Y equal  to 90 the  drag  coefficient 
becomes  large,  sometimes  as high as 1.0 to 2.0; how- 
ever,  the  drag  coefficient  is  reduced  as  the  shape of 
the  earth mound approaches  that of a cylinder.  For a 
cylinder  the  drag  coefficient  may be of the  order of 
0.3 to 1.0 or  more (with higher  values  applicable  to 
high overpressures)  while  it  becomes  zero if there  is  
no projection  above  the  surface of the  ground.  (For a 
discussion of reflection  and  drag  coefficients,  see 
Ref.  V-2.8). Thus,  placing  soil  around  a  surface 
structure  may  reduce  the  forces  acting on the  struc- 
ture  directly.  Also  from  the  geometry shown in Fig. 
V-2.7, it is apparent  that  the  forces  associated  with 
diffraction  and  drag on the  surfaces of the mound can 
refract  into  the  soil  ahead of the  structure  thereby re- 
ducing the  loading on the  structure  enclosed by the 
soil. 

*The  drag  coefficient is a  number which is  multi- 
plied by the  dynamic (9) pressure in a i r  produced 
by particle  velocity  to  determine  the  drag  pressure 
on a  given  configuration  exposed  to  the  ‘%last wind!‘ 
It depends on the  shape of the  element  and upon the 
Reynolds  number  primarily. 

multiplied by the  overpressure  to  determine  the 
diffraction  pressure  acting upon an obstacle in the 
path of the  airblast. 

**That  is,  the  observed  variation of reflection  coeffi- 
cient  with  angle of incidence in the  region of angles 
of incidence  around 4 5 ’  is  subject  to  large  scatter. 
The  results  are much more  smooth and repeatable 
between  tests  for  angles of incidence  outside  this 
region. 

tThe  reflection  coefficient is a  number which is  
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FIG. P-2.7 PRESSURES ACTING ON WINDWARD FACE  OF SOIL 
MOUNDED  OVER  A  STRUCTURE 

Results of field  tests  and  subsequent  theoretical 
analyses show that,  for  configurations of earth  cover 
at  least  meeting  the  criteria  summarized in Fig. 
V-2.8, the  type of action  postulated in the  foregoing 
actually  develops.  These  studies  indicate  further 
that  even though translational  forces  may  reach  the 
structure,  significant  antisymmetrical  deformation 
of the  fully  buried  structure  (with  cover  requirements 
meeting o r  exceeding  those shown in Fig. V-2.8) does 
not develop.  These  antisymmetrical  deformations 
appear  to be impeded by the  resistances  mobilized 
in the  soil,  as  well as by the  tremendous  surcharge 
imposed by the  side-on  overpressure. 

Before  discussing  the  theoretical  analyses  some 
comments  relative  to  the  origin  and  evolution of Fig. 
V-2.8 a r e  in order. The configuration of the mound 
placed  over  structures  to  streamline  them as well a s  
to  provide  radiation  protection  has been studied 
almost  continuously in field  tests  since  Operation 
Greenhouse  (1951).  The  shape  and  amount of cover 
has  varied  between  tests.  Probably  the  first  attempt 
was  made in Ref.  V-1.36  to  specify a general  design 
rule  to be followed in constructing  mounds  to  obtain 
essentially  fully-buried  conditions.  This  general 
rule was  established by studying  the  observed re- 
sponse of the  structures  tested in the  field  and by 
speculating on the  amount of additional  cover which 
might  be  required  to  essentially  eliminate  the  anti- 
symmetrical  deformations  observed in the  tests. 
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Initially  a  slope of 1 on 3 was  specified  for  the  mini- 
mum  cover;  subsequent  speculation  resulted in 
increasing  the  maximum  slope  to 1 on 4. Also  for 
radiation  protection  additional  cover beyond the  mini- 
mum  might  be  required  which  dictated  the  addition of 
"Region A" (Fig. V-2.8).  Allowing a greater  slope 
(to 1 on 2) in "Region A" was  consistent  with  the 
hypothesis  that  the  earth mound must  streamline  the 
enclosed  structure  since  increasing  the  slope in 
"Region A" did not produce a sharp  discontinuity in 
the  earth  contour. It is emphasized  that  the  recom- 
mendations  (Fig. V-2.8) were  initially  suggested as 
design rules based on extrapolations of field  data  and 
some  correlative  data  from  shock  tube  studies  (Ref. 
V-2.9).  Subsequent  analyses  have  indicated  that  the 
design rules for fu l l  burial are reasonable. 

For  depths of cover  less  than  those  portrayed 
in Fig. V-2.8 the  behavior of buried  structures is not 
clearly  defined.  The  empirical  data  indicate  that 
some  antisymmetrical  deformations  develop if the 
extent of fill over  the  structure is less than  that  de- 
fined  herein.  The  procedure  normally  used  to  design 
such  structures  (Ref. V . l )  requires  estimating  the 
forces  acting on the  partially  buried  structure by 
linear  interpolation  between  the  forces  which  exist 
when the  structure is completely  exposed  and  the 
forces  which  exist when the  structure is ful ly  buried. 
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FIG. ST-2.9 POTENTIAL  SURFACESOF  FAILURE IN SOIL 
SURROUNDING A STRUCTURE 

Rectangular  Structures. In Fig. V-2.9 a r e  
shown the  translation  and  potential  planes of failure 
in the  surrounding soil produced by airblast-induced 
ground  motion.  The  primary  mode of failure  ob- 
served in exposed  retangular  structures without earth 
cover  occurs as a result of the  translation  pictured 
in Fig. V-2.9.  For a completely  buried  structure, 
however,  this  mode of failure appears  unimportant 
because  the  structural  deformations  immediately 
mobilize  sizable  passive  resistances in the  surround- 
ing  soil  to  prevent  such  deformation (by inference 
from  the  discussion below of the  behavior of arches). 
Consequently  the  translation is not critical in defining 
the  moments  and  stresses  for  which  the  overall  frame 
must be designed;  in a buried  rectangular  structure 
it  seems  only  necessary  to  consider  the  loading on 
the  individual  parts  in  analysis.  These  loads in turn 
a r e  those  produced  directly by the  blast-induced 
stresses  reaching  the  element  because  the  passive 
pressures  induced in the soil generally are small  
compared  to  the  dynamic  stresses  and  because  the 
passive  pressures  normally are short  in  duration 
lasting  approximately  only as long as it  takes  the 
wave  to traverse  the  structure. 

Arches  and  Cylinders.  The  potential  planes of 
failure induced by deformation of an  arch  or  cylinder 
while  the  wave is enveloping  the  structure  are  much 
more  complex  than  those shown in Fig. V-2.9 because 
of the  curved  surfaces  which  contact  the  soil.  Never- 
theless a condition of passive  pressure  must  also 
develop  for  these  configurations as the  wave  envelops 
the  structure. In Ref. V-2.10 potential  failure  planes 
similar to those shown  in Fig. V-2.9 were  assumed, 
with  the  plane of failure  intersecting  the  springing 
line of the  arch.  The  analyses  performed on the  basis 
of this  assumption are qualitatively  consistent  with 
experimental  observations in the  field  (Refs. V-2.11 
and V-2.12).  

The  analyses  (Ref. V-2.10) assume  that  the 
arch may  be  replaced by a ser ies  of four  straight- 
rigid bars (Fig. V-2.10). Mass, flexural  stiffness, 
and  applied  forces  (including  restraint of the  soil) 
were  concentrated  at  the  intersection of each  pair of 
bars ,  The  overpressure  was  applied  to  the  surface 
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of soil  above  the  arch,  and  initially  it  was  treated as 
being  equivalent  to a surcharge* on the  classical 
wedges of active  and  passive  states of plastic  equilib- 
rium in the  soil  (cf.  Fig. V-2.9).  However,  the 
overpressure  was  considered  to  propagate  along  the 
surface  with a velocity  corresponding  to  the  air- 
shock  velocity  and  to  build up and  decay following 
the  ideal  waveform  (cf. Part 11). Comparisons  (Ref. 
V-2.10) of the  results of the  analyses  with  the  observ- 
ed  behavior  (Refs. V-2.11 and V-2.12) indicated  that 
the  overpressure  could not  have been  equivalent  to 
surcharge;  that is for  this  model  to  predict  the 
observed  deformations of the  arches  tested,  the 
surcharge had to be reduced below the value of over- 
pressure throughout  its  time  history.  This  result 
could  indicate  that  the  model  does not represent  the 
actual  structure  reliably  or  that  the  overpressure is, 
in fact, not ful ly  effective in producing  the  conditions 
of plastic  equilibrium in the soil, a condition  which 
seems  tenable in that  the  overpressure  (varying  with 
time)  must  change  the  resistance in the  soil  from 
classical "at rest"  to  plastic  equilibrium  conditions. 

Airblast-induced  stresses  were  assumed  (Ref. 
V-2.10) to  propagate in the  soil  at  the  seismic  veloc- 
ity  (dilatation).  Various  values of the  ratio of hori- 
zontal  to  vertical induced stress  were  assumed in the 
general  studies  presented. 

In Ref. V-2.13 the  model  discussed  immediately 
above  was  used  to  study  specifically  the  response of 
the  structures in the  field  test  (Refs. V-2.11 and 
V-2.12). Although a  consistent set of results  (Table 
V-2.2) between  the  model  and  prototype  were  obtained 
using  reasonable  values of the  parameters as sum- 
marized below the  table, Whipple notes  several  con- 
ditions which do not match  the  properties of the  
model: 

(1) The arches  were  short  relative  to  their 
diameter so that  the  end  bulkheads could 
significantly  stiffen  the  arch  rib. 

(2) Accelerometers  attached  to  the  footings of 
some  structures  indicated  significant 
motions  while  the  model  assumes  footings 
immovable.  (The  test  data in Table V-2.2 
are adjusted by subtracting  the  footing 
motion  directly  from  the  deflections of the 
arch.) 

(3 )  The  model  assumed pinned supports of the 
haunches  while the test  structures  may 
have  developed  some  restraint at the 
springing  line. 

Despite  these  discrepancies  the  analyses  indicate  that 
the  model  can  be  adjusted  using  reasonable  values of 
the  parameters  to  reproduce  the  observed  behavior. 

*The  surcharge would be  the  hypothetical  weight of 
soil  acting  at  the  surface  producing  the  same 
ver t ical   s t ress  as the  overpressure. 

FIG. P-2.10 MODEL CONSIDERED  IN ANALYSIS (REF. P-2.10) 

Prevention of disastrous  flexural  deformations 
by unity of action between circular  structures  and 
soil  indicates  that  these  configurations  can  be  much 
more  flexible  than  rectangular  structures  for which 
large  flexural  resistance is inherent  because of the 
action of the  individual  elements.  The  flexibility of 
arches  also  suggests a hazard which might  develop 
in arched  or  cylindrical  structures:  the  reduction in 
flexural  stiffness in the  member  may  induce  buckling 
phenomena.  However, a brief  study  conducted by 
Duberg  (Ref. V-2.14), using a model of the  same  type 
as Whipple's  (Ref. V-2.10) and  similar  assumptions 
pertaining  to  the  behavior of soil,  suggests  that  elas- 
tic buckling is improbable  for  practical  structures 
buried  sufficiently  deep  to  inhibit  flexural  deforma- 
tions  produced by the stress wave  enveloping  the 
structure. 

Domes. In general a dome  will  be  approximately 
only half as thick  and  hence only half as stiff as an 
arch of the  same  major  span  and  proportioned  for  the 
same loading.  This  increased  flexibility  should  mag- 
nify the  mobilization of resistance in the  surrounding 
soil of the  type  discussed  for  an  arch.  That is, the 
resistance  mobilized in the  soil  opposing  antisymmet- 
rical  deformations in a dome  should  be  greater  than 
that  developed in a corresponding  arch. If sufficient 
cover is provided  to  mobilize  the  magnitude of the 
soil  resistances  required,  then a dome  should  respond 
primarily as though it  were  acted upon by a uniform 
pressure all around  at  any  instant of time.  Greater 
flexibility in a dome  should  also magnify the  tendency 
toward  elastic buckling, but it would appear  such 
buckling is improbable  for  practical  structures. 

Domed configurations  located  entirely below the 
ground  surface  have been included in some  early  field 
tests  (Greenhouse  and  Jangle).  These  were  precast 
structures  consisting of relatively  rigid  concrete 
panels  bolted  together  at  intervals,  and by virtue of 
this  construction  they are very  difficult  to  analyze. 
However it is important  to  note  that none of the  pre- 
cast  domes  buried below the  surface  experienced 
significant  deformations. 
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TABLE V-2.2 COMPARISON OF MEASURED (REFS.  V-2.11 AND V-2.12) 
WITH COMPUTED  DEFLECTIONS (REF.  V-2.13)  OF ARCHES 

Inward Radial  Deflection of Crown.  ft. 

Test * Calculated 

Reinforced  Concrete  Arch 0.098 0.101 

Corrugated  Steel  Arch  0.166  0.163 

*Adjusted by subtracting  the  deflection of the  floor  from  the  deflection of the  crown. 
+Input  Parameters: 

Seismic  velocity of soil = 3000 ft, 'sec 

Unit weight of soil = 100 pcf 

Cohesionless sol1 with  angle of internal  friction of 30". 

Friction  angle between soil  and  arch = 20" (Concrete  arch) = 10" (Steel  arch) 

Ratio of horizontal to vertical   stress induced i n  the  soil = 0.15 

"Coefficient of pressure  at   rest" = 0.50 

Overpressure = 130  psi  (measured) 
Ratio  equivalent  surcharge  to  overpressure = 0.11 (Concrete  arch) = 0.12 

(Steel  arch) 

V-2.2.2 Effect of Pulse Length and  Source of 
Loading 

Laboratory  investigations  (Ref. V-1.30 for 
example)  related  to  the  problem of determining  the 
effect of density  and  stiffness of a model  structure 
(or gage) have  involved  loading statically  the  soils in  
which these  gages  were  embedded.  These  studies 
have progressed  with  extreme  difficulty  because of 
problems  encountered in reproducing  the  properties 
of the  soil  from  test  to  test. Yet an important  con- 
clusion  (Ref.  V-1.30)  has been obtained which is  that 
thin pressure  cells  which a r e  volumetrically  stiffer 
than the  soil.  such  as  Carlson  cells,  actually  measure 
approximately  the stress  truly  existing in the  medium. 
The  actual  magnitude of the e r ror   i s   a t  the  moment 
Indeterminate. 

Dynamically a similar  situation might develop 
since  small  gages  and  structural  models  are  envel- 
oped by the  shock so rapidly  that  reflections  are 
cancelled a s  nearly as quickly as they develop by the 
gage's  being  "carried  along with" the  soil.  That  is, 
an imminent  reflection would tend to  drive  the  gage 
Into the  soil beyond it.  This  soil would be in motion 
a  short  time  following  the  onset of the  reflection. 
The  gage or small  structure i n  turn in "catching up" 
with the moving soil would effectively  cancel  the 
reflected  stress. 

In Table V-2.3 empirical  data  obtained  from 
tests of structural  models  are  summarized:  these 
data with other   s imilar   resul ts   a lso  are  shown  in Fig. 
V-2.11 (Ref.  V-2.15). Not a l l  of the  data shown in 
the  figure a r e  included in the  table  because only the 
information in the  table  was  investigated  (Ref. V-2.15) 
to  determine  the  consistency of the  structural 
motions with the  stresses  acting on the  structure. 
Investigation of this  consistency was not possible  for 
the  other  cases  because  sufficient  data  generally 
were not obtained in the  test to permit  the  analysis 
to  be  made.  The  analyses  were  performed  assuming 
two limiting  conditions:  zero  and  infinite  stiffness of 
the  soil beyond the  structure. In every  case  the 
computed  deflection of the  front  (loaded)  wall of the 
structure  relative  to  the  supports of the  wall  using 
the  measured  stress to define  the  loading  and  zero 
soil  stiffness  was  compatible with the  measured 
relative  deflection.  Since  this  is  the  lower bound 
solution  for  relative  deflections  and  since  the  stiff- 
ness of the  soil  should  be  nearer  the  lower bound, it 
would appear  that  the  measured  pressures on the 
structure  are  approxinlately  correct. 

Although it  varies,  the  empirical  ratio of the 
s t ress  on the  structures  (most of which were  located 
in the  crater)  to  the  approximate  stress in the rnedi- 
um is  consistently much greater  than  two, which is  
the  maximum  value  consistent with Eq. V-1.7 from 
consideration of acoustic  impedance. Unlike the  case 
of the  small  gages  imbedded in soil,  however,  these 
data  indicate a reflection of stress  at  the  interface. 
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FIG. P-2.11 COMPARISON OF STRUCTURE AND RADIAL MEDIUM  STRESSES 

A logical  explanation of this  reflection is in- 
dicated  in  Fig. V-2.11. In this  figure  the  vertical 
scale  has  been  normalized by the  apparent  radius of 
the  crater* in an  attempt  to  eliminate  the  effect of 

*The  crater  radius.(Ref. V-2.15) was  defined by 
the  product of two factors. S = soil  factor  and 
D = depth  correction  factor which depends on 
scaled  charge depth ,Ac. Thus D is a normalized 
curve  defining  crater  radius as a function of h c  
and S is the  normalizing  factor  for  each  soil  type. 

the  soil  type  and  to  compare  all  data on a  single  plot. 
A yield  (total  energy)  equivalence  between  nuclear 
and HE of 0.3 a s  noted in the  legend  was  used  to 
reduce  the  nuclear  data  for  direct  comparison  to HE. 
This  equivalence  was  determined  (Ref. V-2.15) by 
comparison of crater  radii following the method 
presented in Ref. V-1.3.  Use of apparent  crater 
radius  to  normalize  the  data  has  been  justified 
empirically  (Ref. V-1 .23) .  The  approximate  appar- 
ent crater  radius  has been superposed on Fig. 
V-2 .11  for  the two basic  types of soil:  "dry" or 
''wet."  The  true  crater  radius is larger  than  the 
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TABLE V-2.3 COMPARISON OF APPROXIMATE CONDITIONS IN MEDIUM 
WITH  CONDITIONS ON STRUCTURES TESTED IN  UET  PROGRAM 

Structure Peak  Radial  Stress  Peak  Stress  Stress  to  Length of of 
in Medium on Structure Medium Stress  Pulse  Structure 

( ps i )  ( psi ) ( f t  1 ( f t  1 

Approximate  Approximate  Ratio  Structure  Approximate Length 
Number 

DRY  SAND PROGRAM ( c  1 1500 ft/sec) 

2Aa 108 150 700 4.7  8 5.00 
2Ab 109 150 82 0 5.5 9 8.33 
2Aa l l l X  90 300 3.3  13 5.00 
2Xa 106 150  631 4.2  6 5.00 
2Ab 107 150 454 3.0 10 8.33 
2Aa 104 130  850 6.5 7 5 .OO 
5Aa 114 150 670 4.5  13 12.5 
5Aa 112 160 700 4.4  13 12.5 

DRY CLAY  PROGRAM ( c P 3000 ft/sec) 

2Aa 405s 100 320 3.2 27 5.00 
2Aa 406X 100 500 5.0 27 
2Ab 308 

5.00 
100 725 7.3 52 8.53 

lOAa 319 100 428 4.3 102 25 .O 

WET CLAY  PROGRAM ( c  = 5000 f t / sec)  

2Aa 405 70 300 4.3 50 5.00 

apparent  one.  Consequently  it may be inferred  that 
all of the  structural  models  exhibiting  large  reflection 
coefficients for the  loaded  face  were  located within 
the  true  crater.  This  implies  that  the  loading  was 
produced by airblast  and not by stress  waves  propa- 
gating  through  the  soil.  Since  the  maximum 
theoretical  reflection  coefficient  for  airblast  striking 
a rigid  object i s  eight (or more),  the  reflections 
indicated in Table  V-2.3  also  support  the  inference 
drawn. On the  other  hand,  for  those  structures 
located  outside  the  crater  it would appear  that  the 
average  stress on the  structure  was  nearly  equal  to 
the  radial   stress in the  medium. 

On the  other hand it  may  be  argued, on the 
basis of the  comparison of the  length of pulse  and  the 
length of the  struc.ture in Table  V-2.3,  that  itnpeded 
motion of the  structure  during  the  early  phase of 
loading caused  a  major  increase in the  pressure 
acting on the  loaded  face.  There  are not sufficient 
data  to  reconcile  these  observations, but it is 
believed  that  the  airblast  argument  is  more  tenable 
than  the  possible  lack of rigid body motion. 

In many of the  field  tests  the  fireball  has 
intersected  the  ground  surface.  Thus, much of the 
empirical  data  include  a  superposition of the  airblast- 
and directly-induced  effects  although in  many of the 
tests  the height of burst  probably  was  sufficient  to 
subordinate  the  directly-induced  effects.  Assuming 

that  damage  to  a  structure  is  inherently  related  to 
the  stresses  existing in the  medium in the  vicinity of 
the  structure  allows  using a direct  comparison of the 
airblast-  and  directly-induced  stresses  to  evaluate 
the  importance of each  type of s t r e s s  in causing 
damage.  Damage  to  a  structural  element  depends 
directly on the  peak  intensity  and  effective  duration 
of force  acting on it.  Therefore, by comparing the  
peak  intensity  and  duration of s t r e s s  i n  the  free  field 
caused by: (1) A  burst  condition  where  airblast- 
induced stress  predominates;  and  (2)  a  burst  con- 
dition  where  the  directly-induced  effects a r e  
maximized,  the  critical  condition  for  the  structure 
becomes  apparent.  This  can  be  accomplished by 
utilizing  airblast  data  obtained by measurements 
from  nuclear  bursts on the  surface  and in a i r  and 
stresses  measured below ground  from  buried  nuclear 
bursts.  Use of the  airblast  data  assumes  that  the 
s t r e s s  induced in the  medium is equal  to  the  over- 
pressure.  Near  the  surface  this  should  be  nearly 
correct  for  soils with seismic  velocity  less  than  the 
average  air-shock  velocity  for  the  pressures of 
interest.  Comparisons are shown in  Figs. V-2 .12  
and  V-2.13  between  the  intensity  and  duration of 
side-on  overpressure  produced by detonations  at 
different  heights of burst in Yucca  Flat.  The  effects 
for  airbursts  were  constructed  from  data  given  in 
Ref.  V-1.24 while the  data  for  overpressures  from 
particular  bursts  were  obtained  from  the  several 
reports  summarizing  measurements  from  the  Jangle 
and  Teapot  Operations.  (Notably  Refs.  V-2.16  and 
V-2.17). 

50 



I000 

800 

600 POOR SURfACE 
AMBIENT  TEMP =I5*C.  1.2 

a MEASUREO  -JANGLE S 

A MEASUREO -JANGLE  U 
MEASURED - TEAPOT ESS 400 

200 

.I 
0 UEIGUT OF BURST 

Y ) 0 0  

3 80 

E 60 
a 

In 

t 
$ 40 
Y 
Q 
W 

2 0  

IO 
8 

6 

4 

2 
1 0 0  500 yx) loo0 

SLANT  RANGE. 11 

FIG. P-2.12 MAXIMUM SIDE-ON OVERPRESSURE PRODUCED BY 
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The  data  from  airbursts in Figs. V-2.12 and 
V-2.13 were  selected on the  basis of the  maximum 
overpressure  produced  at a given range  from  the 
surface  zero  (the point  on the  ground  surface  verti- 
cally below the point of detonation).  Therefore,  this 
curve  is a composite of data  from  detonations  at 
various  heights of burst which causes  the  unusual 
cusp  at  approximately 1900 ft slant  range;  this  cusp, 
in  this  case, is not a real  phenomenon.  To  illustrate 
the  magnitude  of  overpressures  produced by a zero 
height of burst,  the  curve  was  extended  to  a  slant 
range of 1200 ft. Beyond this  range,  the  curve  con- 
structed  from  data in Ref. V-1.24 approaches  the 
Jangle S data  asymptotically.  These  figures  graphi- 
cally  illustrate  that  the  overpressure  is a maximum 
for  surface  bursts while the  positive  phase  duration 
is comparable  for  the  bursts  considered within the 
range of interest  for  buried  structures  (above  ap- 
proximately 30 psi). In addition  they  show, as would 
be  expected,  that  the  part of the  mechanical  energy 
producing  airblast  is  diminished  for  buried  charges. 
On the  assumption  that  the  intensity of airblast- 
induced  ground  motion  varies  directly with the 
intensity of overpressure,  Figs. V-2.12 and V-2.13 
suggest  that a surface  burst  might  be  more  critical 
than  an  underground  burst in  causing  damage  to  a 
structure  located in soil with a  seismic  velocity  less 
than  the  average  air-shock  velocity. At least,  for 
horizontal  surfaces of structures  located  near 

ground  surface  the  airblast-induced  stresses  should 
prove to be  more  critical  than  the  directly-induced 
stresses  since the  proximity of the  free  surface  will 
diminish  the  vertical component of compressive 
stresses  from  the  directly-induced  wave. 

For  vertical  elements of structures  near  the 
surface, a comparison  is  needed of the  horizontal 
s t resses  induced by airblast with the  horizontal 
s t r e s s  produced by airblast  and  directly-induced 
effects  in  combination. To make  such a comparison 
requires a specification of the  magnitude of maximum 
horizontal s t r e s s  produced by airblast. Study of the 
data  in  Refs. V-1.12 and V-1.13 indicates  that,  for 
the  dry-granular  soil  common  to  Frenchman  and 
Yucca Flats  at  the Nevada Test  Site,  the  maximum 
horizontal  stress induced by airblast  (at  depths of 20 
ft or  less)  is  approximately  one-quarter of the 
maximum  overpressure.  This  factor  was  employed 
in  constructing  the  curve shown  in Fig. V-2.14 from 
the  similar  curve  in  Fig. V-2.12. In addition  Fig. 
V-2.14 shows  the  pressures  in  the  soil  measured by 
neoprene-bags in Aquagel at  depths  ranging from 10 
to 68 ft  and  the  radial  horizontal  stresses  nleasured 
by Carlson  gages  at a depth of 10 ft.  Finally,  Fig. 
V-2.14 contains  the  overpressure-slant  range  curves 
for  the  specific  nuclear  bursts in Fig. V-2.12 for 
direct  comparison with the  stresses  measured in the 
medium. 

Several  interesting  effects  are  apparent in 
Fig. V-2.14: 

(1) The  neoprene  bags  in  Aquagel  measured 
pressures  in the  Jangle S detonation which 
were 0.1 to 0.6 times  the  overpressure. 

(2) The  neoprene  bags  in Aquagel,  on an 
average,  measured a pressure  essentially 
equal  to  the  overpressure in the  Jangle U 
detonation. 

(3) The  Carlson  cells  buried in soil  measured 
s t resses  which at  small  slant  ranges  were 
larger while at  large  slant  ranges  were 
smaller  than  the  overpressure. 

(4) On the  basis of the  average  measurements 
from  the  surface  and  underground  detona- 
tions,  the  peak  radial  stress in the  medium 
was  comparable  to  the  hypothetical  stress 
computed  from  one-quarter of the  maxi- 
mum overpressure  produced by surface or 
airbursts. 

The  observation  that  the  neoprene  bags in 
Aquagel  measured  pressures of the  order of the  over- 
pressure  in  the  actual  detonations might be  a  result 
of the  overpressure  inducing  a  nearly  equal  stress in 
the  fluid  column  including  the  gage;  that  this  be  the 
case  however i s  not clear in the  records  because of 
difficulty in distinguishing  the  effect of the  directly- 
induced s t ress .  On the  other  hand,  the  lack of a 
consistent  pattern showing a definite  attenuation with 
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depth in the  data  from  gages  at  the  same  location but 
at  different  depths  supports  the  hypothesis  that  a 
unifortn s t ress   was developed in the  fluid  column. In 
the  Teapot ESS detonation  the  fact  that  the  smaller 
slant  ranges showed stresses  larger than  the  over- 
pressure might be explained by the  near  superposition 
of the  airblast-  and  directly-induced  stresses  since  at 
small  slant  ranges  the  arrival of the  stresses of both 
types  occur  more  nearly  simultaneously  than  at  large 
slant  ranges. Although the  values  compared  bear no 
real  relation to one  another,  the  fourth  observation  is 
important  since  it  illustrates  for  the  depths  and  soil 
type  considered  that  the  radial  stress  in  the  medium 
produced by airblast and direct  effects  combined  is 
nornlally not greater  than  the  overpressure  and  can 
be ;I relatively  small  fraction of the  overpressure. 

Where  the  seismic  velocity of the  medium 
greatly  exceeds  the  average  air-shock  velocity,  the 
directly-induced  effects  predominate.  The  maximum 
radial   s t ress  in a  granite  with  seismic  velocity of 
12,000  ft/sec  are  compared with overpressure in 
Fig.  V-2.16.  These  are  compared  directly  based on 
the  assumption  (supported by the  Boussinesq  solution, 
cf.  Section  V-1.3.1)  that  the  maximum  radial s t r e s s  
induced by airblast  cannot  exceed  the  magnitude of the 
overpressure.   Stresses in the  medium a r e  based on 
equations  derived in Ref. V-1.17 by fitting  equations 
to  the  data  presented in Ref. V-1.25 and by specifying 
the  energy  equivalence  between high explosive  and 
nuclear  charges  from  data  obtained in the  contained 
detonations in tuff (Ref.  V-2.18). These  data  and 
equations are  presented in Par t  IV  of this book. The 
curve  for  overpressure  was  constructed  from  data 
summarized in Ref. V-1.24. 

Since  structural  response  is  a  function of both 
the  intensity and duration of s t ress ,  it i s   a lso 
necessary to investigate  the  duration of the  radial 
underground  stress.  Figure  V-2.15  shows  a  coni- 
parison uf measured  durations of radial   stress with 
positive  phase  duration of overpressure. An 
assulnption  that  the  airblast-  and  directly-induced 
horizontal stress  near  the  surface would have  a 
duration  comparable  to  the  positive  phase  duration of 
overpressure  is  supported by Figs.  V-2.13  and 
V-2.15. 

In Fig.  V-2.16  it is  apparent  that  the  directly- 
induced effects  predominate  at high pressure  levels 
if it is  recalled  that  the  radial  stress  induced by a i r -  
blast  cannot  exceed  the  overpressure  and  that  the 
seismic  velocity of the  medium  exceeds  the  average 
air-shock  velocity. 
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V-2.2 .3  Arching 

Dynamic  arching,  among  other  factors, 
probably  depends upon the  relative  wavelength of the 
s t r e s s  wave and  length of the  structure in the  di- 
rection of s t ress  wave propagation. If the  structure 
is long compared to the wave length of the  stress 
wave,  the  structure  tends to remain  stationary,  and 
negative  arching may develop. 011 the  other hand a 
short  structure  relative to the  length of the  pulse 
probably would ride  along with the  soil,  and  arching 
effects 011 the  overall  structure may be small. For 
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that  niatter any structural  characterlstic which 
causes  the  structure  to  remain  relatively  stationary 
compared  to  the  soil  surrounding it may  cause  nega- 
tive  arching 011 the  loaded  elements. At the  other 
csTreme, if the  structure  can  be  forced by some 
mcans  (such  as by under-design of the  foundations) 
t u  n~uve away from  the  soil  that is producing  contact 
forces  on it.  positive  arching may be  enhanced. 
Positive  arching  also may be  enhanced when certain 
parts of the  structure  are  more  flesible  than  other 
parts;  here  arching may occur  across the  more 
flesible  parts  causing  increased  loads on the  more 
rigid  elements. 

Thus,  whether  the loading is  static  or  dynamic, 
arching  depends upon deflection of the  loaded  ele- 
ments.  For  dynamic  loads  the  initial  deflection 
doubtless is caused by the  stress wave striking  the 
element.  Thereafter  a  complex  redistribution of 
s t ress   occurs  both in the  medium  and in the  struc- 
ture.  The  mechanism of redistribution  is not 
understood, but it  may not be of practical  importance 
since  to  develop  arching it is only necessary  that 
deflections  occur in the  structure. 

Theory. On the  premise  that  structural  de- 
flections of some undefined magnitude  exist in an 
element of a  buried  structure,  extensions of concepts 
originally  postulated by Terzaghi  (Ref.  V-2.4, 
Chapter X) qualitatively  suggest a means by which 
arching may occur  under  dynamic  conditions.  These 
extensions  were  accomplished  partially  under  the 
current  contract and partially in another  study  (Ref. 
V-2.  7).  The  complete  derivation  is  given in Ref. 
V-2.7:  thus only a  sunlmary  is  presented  here. 

A first look at  the  analyses  sunlmarized below 
may indicate  that  the  phenomena apply to both static 
and  dynamic  arching;  however as  derived, it i s  be- 
lieved to be  more  appropriate in explainingthe  dynamic 

case  since  it  neglects  the  overburden of soil on the 
assumption  that it is  small  compared  to  the  over- 
pressure  existing on the  surface. (An overburden 
producing  the  same  magnitude of s t r e s s  as the  over- 
pressure would normally  be of the  order of a  hundred 
feet of soil  fill on the  surface.) 

A s  shown in Fig. V-2.17, the  deflection of the 
structure uo causing  the  arch  to  develop  in  the  soil 
produces  planes of potential  failure of the  soil  above 
the  roof.  The  shearing  forces T acting  along  the 
planes of failure  were  assumed  to  be  related  to  the 
relative  movement u acting  across  the  failure  planes 
(Fig. V-2.18). Two cases  were  postulated: (1) the 
relative  movelnent  at  some  level  above  the roof i s  
greater  than  some  multiple oi of the  span L of the 
roof;  and  (2)  the  relative  movement u was  less  than 
CYL (From  Terzaghi's  results oi would be of the  order 
of 1%). In turn  the  relative n1ovement u was  assumed 
to  vary  exponentially  between  the  surface  and  the roof 
(Fig. V-2.19). 
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a L  

FIG p-2.18 ASSUMED VARIATION OF SHEARING STRESS 
VERSUS DISPLACEMENT 

P 

p = Vertlcal  Stress 
q I Horizontal Stress 
r = Shearlng  Stress 
L = Wldth or Length 

o f  Structure 

FIG P-2 17 FORCE FIELD ASSUMED FOR UNDERGROUND  STRUCTURE 
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From  equilibrium of the  element  (Fig. V-2.17)  
the following equations a r e  determined: 

p = - (ee - 1) + poe A e 
B 07-2.7)  

and 
R =  

B =  

8 =  

where  p 

PO 

loge A + B ~ ,  
A + Bp 

BX for  Case 1: u > f fL ,  T = T max 

(V-2.8)  

" P  

U <  f f L ,  T = _li_ T m a x  
N L  

X 

U 

UO 

P 
ff 

A 

C 

R 

B 

K 

(4 

vert ical   s t ress   a t  any depth 

vertical  stress  acting on roof of 
structure 

base of natural  logarithms (2.718 ....) 
shear   s t ress   a t  any depth 

limiting  shearing  stress 

vertical  coordinate  measured  from 
roof of structure 

displacement  at  any  depth 

displacement of roof 
constant for decay of displacement 

limiting  value of constant  defining 
displacement  at which shear  failure 
occurs in  soil 

- C 
R 
cohesive  strength of soil 

ratio of area of roof of structure  to 
perimeter of roof lying  between 
assumed  planes of slip  (Fig. V-2.17) 

K tan 
R 

ratio of horizontal  to  vertical  stress 
in  soil (q = Bp in Fig. V-2.17) 
angle of internal  friction of soil 

A qualitative  comparison of the  relative  values 
of Eq. V-2 .7  and V - 2 . 8  (Fig. 2 .20) ,  shows  that  Case 
l(u > oL)  causes  the  arching  factor H to  increase 
linearly with depth  above  the  structure while Case 2 
(u 5 NL)  causes  the  arching  factor  to  reach an 
asymptote with a value of BuO/ffP. It is believed  that 
arching in an  actual  case  might  lie  between  the two 
limits  expressed by the two equations  plotted  in  Fig. 
V-2 .20 .  However,  it is  more  likely  that  arching 
more  nearly  approaches  Case 2 (u 5 f fL)  than  Case 
1 (u > oL) for  buried  structures  subjected  to air- 
blast-induced stress  because  the  lateral  forces  q  can 
become  large  and  because  the  tnaximunl  deflections 
obtainable in the roof of a  buried  structure  tend  to 
become  small for overpressures  normally  considered 
in  the  design of buried  protective  structures. 

x x 

t t 

FIG. P-2.19 VARIATION OF DISPLACEMENT  AND SHEARING STRESS 
WITH DEPTH 

FIG. P-2.20 VARIATION OF STRESS  WITH DEPTH 

A s  is the  case in static  arching  also,  dynamic 
arching is critically  dependent on the  deflections of 
the  structure which, because of the  interaction,  are 
not clearly  understood as yet. 

An analysis  was  performed  (Ref. V-2.19) using 
the  assumptions in Case 1, immediately  above,  except 
that  the  shearing  force T was  taken as constant 
throughout  the  depth  above  the  structure.  Here how- 
ever  the  dynamic  motions  and  associated  vertical 
s t resses  i n  the  soil  were  accounted for by consider- 
lng the  mass of soil  defined by the  potential  failure 
planes,  the  ground  surface,  and  the roof of the 
structure  (Fig. V-2.17) as a rigid body. The  mass of 
this  rigid body and the  shearing  forces  acting on it 
increase  very  rapidly with depth;  consequently  the 
inertia  force  associated with motion of the  rigid body 
and  the  shearing  force  increase  very  rapidly with 
depth  causing a drastic  reduction in ver t ical   s t ress  
induced by airblast. In fact within a  depth of the 
order of the  span of the  buried  element  the  combined 
inertia  and  shearing  forces  equal  the  magnitude of 
the  overpressure  and  the roof of the  buried  structure 
a t  a depth equal  to  its  span  feels  essentially no 
dynamic  load.  This  conclusion  derived  from  the 
analysis  (Ref. V-2.19) supports  the  observation by 
the  authors  (McKee,  Selig  and Vey) that  their  analysis 
probably is   an upper  limit  for  dynamic  arching. 
From  the  preceding  discussion,  this  upper  limit 
probably  develops  because  the  shearing  stresses 
along  the  planes of failure  should not be  constant 
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over  the  entire depth because  the  arching  develops 
a s  a  result of structural  displacenlent  and  the  effect 
of this  displacelnent  should  diminish  at  points 
renloved  from  the  structure. 

Experimental  Results.  Dynanlic  tests  were 
conducted  (Ref. V-2.6) with diaphragm  or  barium 
titanate  gages (which for  the  scale of the  experiments 
can  be  considered  a  simulated  structure in a bounded 
medium)  embedded in cylinders of Hysol o r  clay  and 
loaded by means of a ballistic  pendulum. A brief 
description of the  diaphragm  gage  already  has  been 
presented in Section V-2.1.2. The  dimensions of the 
barium  titanate  shell  were 1/8 in. dia. x 1 / 8  in. high 
with a  wall  thickness of 0.020 in.  This  shell  was 
mounted within a  brass  cylinder which was  5/16-in. 
dia. x 5,'16-in.  high.  Load  was  distributed  to  the 
barium  titanate  through  a 1 '8-in.  dia.  lucite  plate. 
Both types of gage  were mounted at  the  center of a 
3.0-in.  dia. x 2-3,'"i-in. long cylinder of Hysol with 
the  gage  axis  coincident with that of the  Hysol  cylin- 
der.  The  depth  ratio  (distance fro111 surface of the 
specimen  to  surface of embedded  gage  divided by the 
span of the  sensitive  element)  was 1.7 and 3.9, r e -  
spectively,  for  the  diaphragm  and  barium  titanate 
gages. In this  configuration,  the  dynamic  response 
for  the  diaphragm  gage in Hysol  was  approximately 
8 6  higher  than  the  response  produced by static  air 
pressure of the  same  magnitude a s  applied  to  the end 
of the  specimen,  and  307  higher  than  the  static 
response  for  the  gage  and  Hysol for the  full  range of 
stresses  applied.  That  is, when plotted 011 the  same 
coordinates as used in Fig.  V-2.3  the  ordinates of 
the  curve  from the dynamic tests  were 80$1 larger 
than  those of the  calibration  curve.  Characteristics 
of barium  titanate  preclude  its  being  calibrated 
under  a  static  condition;  thus  these  gages  were 
calibrated in a shock  tube  using a i r   p ressure .  When 
enlbedded in  Hysol the  barium  titanate  registered a 
response  for  all  values of stress  applied  to  the 
specimen  approxin~ately 407, greater  than  the 
response  produced by a i r  shock  applied to the  gage 
alone. Roughly comparable  results  were  obtained 
when the  barium  titanate  gage was embedded in a 
cylinder of remolded  clay with initial  dimensions  the 
same as the  Hysol.  However,  the  clay  deformed 
significantly  under  each  impact  and  the  response of 
the  embedded  gage  was  a  function of the  number of 
impacts.  The  discrepancy  between  the  response of 
the  embedded  gage  and  the  gage in air  became 
smaller with the  number of impacts  and also smaller 
a s  the ~nagnitude of force  applied to the  specimen 
was increased. 

The  difference in response of these  gages  to 
static  and  dynamic  loads  might  be  attributed,  among 
other  things,  to two facts: (1) a  mismatch of 
acoustic  impedance between the  gage  and  embedding 
cylinder  and (2) a change in the  properties of the 
basic  materials  under  dynamic  loads. In the  response 
records of the  gages  there  is no evidence of s t r e s s  
reflection  from  the  interface of the  pendulum  sup- 
porting  the  cylinder in which the  gage was embedded. 
Because of the  construction of the  gages  used, it is 

difficult  to  compute an acoustic  impedance;  neverthe- 
less  it appears  probable  that  the  gage  has  a  higher 
inlpedance  than  the  elnbedding  material. In the 
diaphragm  gage  especially  the  modulus of elasticity 
of the  brass  may  have  increased as a  result of the 
dynamic  load  causing  the  stiffness of this  element 
to  increase  thereby  causing  a  decrease in positive 
arching. 

On the  other hand, the  fact  that  the  gage 
response  dynamically,  for  embedment in Hysol a t  
least,  was  consistently  greater  than  the  static 
response  for  all  applied  stresses  indicates  qualita- 
tively  that  arching may occur  dynamically by a 
mechanisn~ which is  similar  to  that  under  static 
conditions.  For  the  particular  case  considered  here 
the  arching  is  negative with the  pressure  felt by the 
simulated  structure  (or  gage)  being  higher  than  the 
applied  pressure. 

Simulated  structures  like  the  diaphragm  gages 
discussed  above  were  tested in full-scale  field 
operations in Operation  Plumbbob  (Ref. V-1.14) and 
at Eniwetok Proving  Ground. A steel  drum 2 ft in 
diameter with vertical  stiffeners,  and 2 ft long had 
aluminum  diaphragms with five  thicknesses in the 
range  from 0.04 in.  to 0.50 in.  clamped  across  one  or 
both ends  (Fig.  V-2.21). Two diaphragms of the  same 
thickness  were  placed 011 either end of the  drum in 
Operation  Plumbbob:  for  the EPG experiments  the 
bottom  diaghragm  was  replaced by a  steel  plate. 

o x  

ALUMINUM DIAPHRAGM 24'0 

16-1" HIGH STRENGTH BOLTS 
NEOPRENE  GASKET 

NEOPRENE "0" RINGS 
-FLANGE  PLATES 

23$ 0 D. x I"r l8 '  ID .  

I I 

DRUM WALL ROLLED  FROM 
2 4 " x f P L  TO 1". II 4'' I D 
CYLIN ER  AND BUTT WELDED 

I U  
N ,, I ,  

STIFFENERS 2; x f  I I"0"PL 

3' x 23" D STEEL PLATE, 
CONTINUOUS WELD 

SECTION *-A 

FIG. P-2.21 PLAN AND  SECTION OF TEST  DEVICE 
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These  drums  were  buried  in  different  locations  at 
depths below the  surface  ranging  from 0 to 20 ft. In 
a manner  similar  to  the  preceding  experiments,  the 
diaphragms  were  statically  calibrated  against  gas 
pressure  using  strain  and  deflection  at  the  center as 
a measure of effective  pressure. 

The  results of these  experiments  are shown 
in Figs.  V-2.22  through  V-2.27 with each  figure 
drawn  for  a  single  diaphragm  thickness. A com- 
posite of these  figures  (Fig. V-2.28) summarizes  the 
results.  The  curves  at  the  top of each  figure  denoted 
theoretical  stress-free  field  are  defined by Eq. V-2.9. 
The  theoretical  attenuation of s t ress  with depth  was 
discussed in detail  in  Section V- 1.3.1. In Ref. V-2.7 
a semi-empirical  equation  was  developed  to  approxi- 
mate  the  theoretical  results.  Basis  for  the  equation 
is that  the  attenuation of s t ress  with depth  depends 
upon the  decay of overpressure with time.  For  over- 
pressures  greater than  30 psi  the  effective  length of 
pulse  (distance  propagated in the  duration of over- 
pressure)  can  be  related  (Ref. V-2.7) to  the  peak 
overpressure ps and  the  yield of the  device W. With 
the  use of this  effective  pulse  length,  Eq. V-2.9 was 
fitted  to  the  theoretical  curves: 

P = NPs (V-2.9) 

where  p = vert ical   s t ress   a t  depth  y,  psi 

p, = peak  overpressure,  psi 

a = -  1 

l + i ;  Y 

y = depth below surface,  ft 

W = weapon yield,  mt 

The  curve  (Eq. V-2.26) is plotted on the  various 
figures  summarizing  the  results of the  drum  experi- 
ments  to  illustrate  the  amount of arching  developed 
as distinguished  from  attenuation. I n  these  figures, 
the  data  to a depth of 5 ft  only a r e  shown for  tests at 
the  Eniwetok  Proving Ground (EPG)  because  the 
measurements below 5 ft (which corresponded 
approximately  to  the  level of the  water  table  at  the 
time of the  test)  indicate  pressures  in  excess of the 
overpressure.  This  increase  has  been  attributed  to 
a s t r e s s  which was  induced in the  water  at  some 
point  nearer  the  burst  and  propagated with little 
attenuation  to  the  drum. 

The  existence of arching  is  apparent in the 
figures.  This  arching  appears to  be a function of the 
depth of burial  and  the  stiffness of the  diaphragm. It 
is interesting  to note from  Figs. V-2.22, V-2.24, and 
V-2.26 that  there is no great  effect of the  size of 
weapon nor of the  characteristics of the  medium 
since  the  amount of arching on EPG 4 at  EPG  agrees 
reasonably  with  the  results of EPG 3 also at EPG  and 
of Priscilla  at  the Nevada Test  Site (NTS). This 
relative  lack of dependence on weapon yield  tends  to 

------ $ = P R I S C I L L A (  142 O S I O V E R P R E S S U R E I  
P I P R I S C I L L A  (23 I PSI OVERPRESSURE)  

"" 3 z E P G 3  (350 psi OVERPRESSURE)  -- 4 z E P G 4  I 2 7 5  PSI OVERPRESSURE)  
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D E P T H ,  f t  

FIG P-2.22 NORMALIZED STRESS VS DEPTH - DIAPHRAGM 
THICKNESS = 0.50 IN 

P, = PRISCILLA (231 psi O V E R P R E S S U R E )  

D E P T H ,  11 

FIG. P-2.23 NORMALIZED STRESS VS DEPTH - DIAPHRAGM 
THICKNESS = 0.25 IN 
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FIG. P-2.24 NORMALIZED STRESS VS DEPTH - 
DIAPHRAGM  THICKNESS = 0.125 IN 
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FIG P-2.25 NORMALIZED STRESS VS DEPTH - DIAPHRAGM 
THICKNESS - 0.08 IN. 

FIG. Y-2.27 NORMALIZED STRESS VS DEPTH - 
DIAPHRAGM  THICKNESS = 0.04 IN 
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NOTE: DIAPHRAGM THICKNESS IND(CATE0 BY t 

f 
v) a 

DEPTH, f t  

FIG. P-2 28 NORMALIZED  AVERAGE CURVES FOR  STRESS VS DEPTH 

indicate  that  the  measurements  obtained  from  the 
drums  does not correlate with the  attenuation of 
ver t ical   s t ress  with depth which depends  directly on 
the  yield of the  device  and  overpressure  (cf. Eq. 
V-2.9). However, it is believed  that  the  data a r e  
insufficient  to  make any conclusions on the  existence 
of attenuation  from  these  measurements;  the  existence 
of attenuation could be  masked by the  very  rapid  in- 
crease of arching with depth of burial.  This belief is  
supported by the  fact  that  vertical  stresses  measured 
by Carlson  cells  (cf.  Fig. V-1.15) do exhibit  attenua- 
tion;  Carlson  cells  should not develop a major  amount 
of arching  because of their  small  size  and  because 
their  sensitive  element  is  relatively  rigid  (See  Part 
111). 

The  degree of arching on these  simulated 
structures  depends on the  thickness,  and  conse- 
quently  stiffness, of the  diaphragms:  the  thicker  the 
diaphragm  the  smaller  the  arching  (Fig. V-2.28). 
This  dependence is  perhaps  more  clearly shown in 
Figs. V-2.29 and V-2.30. In these  figures  the  "major 
arching  effect"  is  taken  to  correspond with the  major 
break in the  curves shown in Fig. V-2.28. As sug- 
gested by the  curves  (Figs. V-2.29 and V-2.30) it is 
believed  that  the  degree of arching  for  the  three 
thicker  diaphragms  is  predominantly a dynamic 
effect while for  the  three  thinner  diaphragms  a 
transition between dynamic  and  static  arching  de- 
veloped;  it is  further  suggested  that  static  arching 
would have predominated  for  diaphragms  thinner  than 
any tested.  This  postulate  results  from knowledge 
that  an unlined  opening can be excavated if  sufficient 

cohesion is present  in  the  soil.  Terzaghi  (Ref. V-2.4) 
states  that  the  insignificant  effective  cohesion  pro- 
vided by moisture  (surface  tension) in granular  soils 
is sufficient  to  allow  an  opening  to  stand i n  the 
absence of vibrations.  Furthermore,  deflections of 
the  order of 1% of the  span a r e  sufficient  to  develop 
a static  arch in sands  (Ref. V-2.4).  Although the 
data  obtained  under - static  conditions  existing  im- 
mediately  after  completing  the  burial of the  drums 
are inconclusive  because of large  scatter,  these  data 
tend  to  indicate  that  complete  static  arching  devel- 
oped for the  thinnest  diaphragms  under  the weight of 
overburden  alone.  The  thinnest  diaphragms  did 
record  vertical  stress induced by airblast, but be- 
cause  the  arch  already had formed  statically  for 
these  diaphragms  the  dynamic load recorded  was 
much  smaller  than  it  was for the  thicker  diaphragms. 
Further  investigation of this  postulate  has  produced 
inconclusive  quantitative  results  because of insuf- 
ficient  data.  It is particularly  important  to  note now, 
however,  that  the  field  data a r e  qualitatively  con- 
sistent with Case 2 of the  theory  summarized  earlier 
in  this  section;  that  is,  the  case  where  the  displace- 
ment  and  shear  stress  associated with arching 
decrease in magnitude with increase in distance 
measured  from  the roof of the  structure. For this 
case  the  degree of arching  changes  rapidly with  depth 
of structural  burial  and  reaches a constant for rela- 
tively  large  depths. 

V-2.2.4 Horizontal  Stresses  (Effect of Soil 
Moisture  Content) 

The  horizontal  stresses  induced in soil  appear 
to  be  critically  dependent on the  moisture  content of 
the  soil in which the  structure  is  located.  They  also 
should  be a function of the  compressibility of the 
structure  compared with the  compressibility of the 
soil  replaced by the  structure.  However,  the  effect 
of the  compressibility of the  structure  is  normally 
small  compared  to  the  uncertainties which exist in 
the  ratio of lateral   to  vertical   stress in the  medium. 
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PERCENT OF OVERPRESSURE 

FIG Y.2 30 VARIATION OF M N O R  STRESS REDUCTION WITH 
DIAPHRAGM THICKNESS 

A completely  saturated  soil  should  propagate a 
higher  level of s t r e s s  than a non-saturated  soil.  This 
can be explained on the  basis of the  manner in  which 
the s t r e s s  wave is  generated and propagates in the 
soil. Within the  time  that  the  stress  is  acting it i s  
doubtful that  the  pore  pressure  is a non-saturated 
soil  can  build up to  equal  the  intensity of blast 
pressures  existing  either within the  crater  or in the 
air  at  the  ground  surface.  Consequently  for  such a 
soil   the  stress wave develops  and  propagates by 
intergranular  contact  and  the  strengths of the  soil 
delreloped during  the  passage of the  shock a r e  con- 
sistent with the  characteristics of the  soil  matrix 
alone. When on the  other hand the  pores  are  com- 
pletely  filled with water,   the  stress wave must 
propagate a s  a hydrostatic  pressure in the  water 
because: (1) the  water  is much less  compressible 
than  the  soil  matrix;  and (2) even  for  very  porous 
soils,  the  water  cannot  drain  to  less  saturated  regions 
in the  times  associated with the  loading. It is   dif-  
ficult  to  make  generalizations  regarding  moisture 
contents  between  the  limiting  states  because  small 
changes in volume in the  soil  matrix  for  incomplete 
saturation  could  result in changing  the  condition of 
the  soil  to one of effectively  complete  saturation. 
At what point a soil which originally  was  unsaturated 
rnay be  considered a s  completely  saturated  is un- 
known although it should  be a direct  function of the 
relative  compressibility of the  soil  matrix  to  water 
and  the  degree of saturation. 

It is  itnportant  to note also  that  the  peak  inten- 
sity of the  airblast-induced  stress in a homogeneous 
medium  cannot  exceed  the  peak  intensity of the  over- 
pressure  at  a given  point;  thus  shock  generally  will 

propagate  more  rapidly and with less  attenuation  due 
to  dispersion in a saturated  soil. Yet the  peak  inten- 
sity of the  directly-induced  stress  generally  will  be 
higher in saturated  than in non-saturated  soil  (Ref. 
V-1.22 and Par t  IV).  Thus,  the  moisture  content  can 
have  an  important  influence in determining  the 
relative  importance of the  airblast-  and  directly- 
induced  effects. 

Even though some clays nlay not be  completely 
saturated,  they may propagate stress in a  manner 
approaching a hydrostatic  condition.  This  develops 
because  the  moisture  can  effectively  lubricate  the 
particles,  thereby  eliminating  internal  friction. In 
such a case  the  seismic  velocity  may be low in com- 
parison  to  that of a  saturated  soil, but the  directly- 
induced  effects  can  be  comparable  to  those of a 
saturated  soil. 

Thus,  the  dynamic  forces  can be changed 
greatly if the  soil  surrounding  the  structure  should 
become  saturated.  This  results  froni  the  hydroslatic 
s t r e s s  which  may be  induced in the  water. Lf the 
hydrostatic  condition  is  induced,  the  dynamic  forces 
on all  surfaces of the  structure  become  equal. A s  
already  discussed,  however,  the  derelopnwnt of a 
true  hydrostatic  state  requires  that  the  soil be satu- 
rated  or  nearly so over  most of the  region  through 
which the  shock  must  propagate.  For  example, if the 
water  table i s  not very  near  the  surfacc,  the  airblast- 
induced s t r e s s  must  propagate  through  unsaturated 
soil  to  reach  the  water  table; in  doing so the  stress 
wave characteristics may be  altered and some  tran- 
sition zone may  develop  before a hydrostatic 
condition is induced below the  water  table.  The 
mechanism  involved i s  not clear  at  the moment. 

Empirical  data  related  to  this phenon1enon a r e  
scarce.  Data  were  obtained  prinlarily  from  the  field 
tes ts  conducted in Frenchman  Flat  at the  Nevada Test 
Site. The tes ts  include  measurements 011 one struc- 
ture  (Ref. V-l.l3), on three  horizontally  oriented 
sin~ulated  structures (Ref. V-1.14) and  from  gages 
(Ref. V-1.12). Also  three  horizontal  measurements 
below the  water  table  were  made  at  the EPG. The 
latter  nleasurements,  however,  are  very dil'licult to 
interpret  because of the  apparent  strong  directly- 
induced s t r e s s  wave which propagated  through  the 
water  between  the point of burst  and  the  simulated 
structure.  The  measurements on structures in 
Frenchman  Flat  also  are  dlfficult  to  interpret  be- 
cause of the  very  small  number.  Nevertheless they 
indicate  the  horizontal  stress  normally  is a snlall 
fractlon of the  vertical  stress.  The  tneasurements 
from  gages  (See  Part IV) are  more  numerous,  and 
they indicate a lateral  stesss  coefficient of from 0.15 
to 0.20. The  measurements below the  water  table  at 
the EPG indicate  the  existellce of essentially  a hy- 
drostatic  state of s t ress .  Finally  the  nleasuretnents 
and  comparisons  made in Section V-2.2 (cf. Fig. 
V-2.14) tend  to  support  a  lateral  stress  coefficient of 
approxinlately 0.25 in dry  granular  soil. 
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A s  a  result of the  relative  absence of pertinent 
data,  it  has  been  recommended, on the  basis of the 
preceding  argument  and  small  amount of data,  that 
fixed  values of the  ratio of lateral   to  vertical   stress 
in the  medium  be  used  for  each of several  general 
classifications of soil.  Furthermore, it has  been 
recommended  that  the  stress  acting on vertical  sur- 
faces of structures  be  taken  equal  to  the  lateral  stress 
in the  medium  regardless of the  compressibility of 
the  structure. In Table  V-2.4  are  the  recommended 
design  values of the  ratio of horizontal  to  vertical 
s t r e s s  (Ref. V. 1). 

TABLE V-2.4 RECOMMENDED COEFFICIENTS OF 
LATERAL TO VERTICAL STRESS IN 
SOIL (STRESS ON VERTICAL 
SURFACES O F  STRUCTURES) 

SOIL TYPE STRESS 
COEFFICIENT 

Cohesionless  soil,  damp  or  dry 1/4 
Unsaturated  cohesive  soils of stiff 

consistency 1 /3 

medium  consistency 1/2 

consistency  3/4 

Unsaturated  cohesive  soils of 

Unsaturated  cohesive  soils of soft 

All  saturated  soils with the  water 
table  at  the  surface 1 

When the  water  table  is not at  the  surface,  it   is 
difficult  to  estimate what lateral  stress  coefficient 
should  be  applied.  Since  there  is not sufficient  time 
for  pore  pressures  equal  to  the  airblast  overpressure 
to  develop in unsaturated  soil, it is doubtful that  a 
hydrostatic  pressure  equal  to  the  airblast  over- 
pressure can  develop in the  water.  As  an  approxi- 
mation  to  account for this  effect  the following has 
been  recommended  (Ref. V. 1): 

When the  water  table  is more than  30  ft below 
the  surface  use  the  value of la teral   s t ress  coeffi- 
cient  for  the  unsaturated  condition in the  same  type 
of soil.  For  intermediate  levels of the  water  table, 
at  depths  between 0 and 30 ft,  interpolate  linearly for 
the  value of la teral   s t ress  coefficient  for  points below 
the  water  table,  and  use  the  values  from  Table V-2.4 
for  points  above  the  water  table. 

V-2.3 BEHAVIOR OF BURIED STRUCTURAL 
ELEMENTS 

In this  section  the  behavior of buried  structural 
elements  and  the  effects of this  behavior on the  load- 
ing and  response of the  elements  is  discussed in 

general  terms.  The  parameters  controlling  the 
behavior  for  specific  types of construction  and  for 
particular  engineering  materials  are  discussed in 
Chapter  V-6.  The  current  discussion i s  divided in 
accordance with the  primary  type of s t r e s s  induced 
by the  loading on the  member.  Detailed  discussion 
of the  strength  and  methods of analysis of structures 
located in soil   are  also included in Chapter  V-6. 

V-2.3.1 Direct  Stress 

Pr imari ly   direct   s t resses   are  induced  in inte- 
rior  columns of rectangular  structures  and in the 
shells of fully-buried  arches  and  domes.  The  failure 
of members  under  the  action of direct   s t ress  nor- 
mally  occurs  at  relatively  small  ductility.  Also  it  is 
generally  true  that  members which a r e  expected  to 
be  subjected  to  direct  stress  are  stiffer  than 
members  subjected  to  other  stress  conditions. 
Greater  stiffness  implies a smaller  natural  period of 
vibration.  Reference  to  Fig. V-1.31,  which defines 
the  resistance  level  required in a  structural  element 
for a given  dynamic  load,  indicates  that  the  reduction 
in ductility,  xm/xy,  and  the  reduction in natural 
period of vibration, T ,  combine  to  necessitate a 
larger  resistance  for  a  given  dynamic  load  than  the 
resistance  required  for  the  same  load  applied  to a 
more ductile  and  less stiff structure.  For  example 
from  Fig. V-1.31, if the  ductility  ratio  for  an  arch 
i s  2 and  the  effective  duration of the  equivalent 
triangular  blast  pulse  is 20 times  the  natural  period 
of vibration,  the  ratio of the  peak  applied  pressure 
pill to  the  resistance qy of the  structure  is  approxi- 
mately 0.75. If on the  other hand only the  period  T 
were  increased  five-fold  the  ratio,  plll/qy,  becomes 
approximately 0.80 while if only the  ductility  ratio 
were  increased  five-fold  the  ratio, pfll./qy, increases 
to approximately 1 .O. 

Because  interior  columns  generally  are  stiffer 
than  the  beams or slabs  they  support,  the  soil  above 
the  structure  tends  to  arch  across  the  beams while 
the  columns  form  the  abutments  for  the  soil  arch i n  
addition  to  the  supports  for  the  beams. Yet the  load 
on the  columns  from both sources  should not exceed 
the  load  caused by the  overpressure on the  ground 
surface  above  the  structure, but the  time  history of 
loading  probably  is  modified by arching. 

V-2.3.2  Flexure 

Primarily  flexural  stresses  develop in the roofs 
of box-shaped  structures.  Roofs of box-shaped 
structures  can  be  subjected  to  direct  stress in com- 
bination with flexure, but generally  the  direct  stress 
is so small in comparison  to  the  flexure  that it may 
be  neglected. An exception  to  this  generality  occurs 
whcn the  span of the roof is  nearly  the  same as the 
span of the wall and  the  structure  is  located in a  soil 
where  the  lateral   stress coefficient is  large.  Means 
of treating  this  exception  will be considered in the 
following  section. 
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FIG P-2 31 EFFECT OF RELATIVE MOTION  BETWEEN SOIL AND 
STRUCTURE WITH LONGITUDINAL  AXIS OF STRUCTURE 
PARALLEL TO DIRECTION OF WOCK  PROPAGATION 

When members  fail in flexure  they  usually 
exhibit  large  ductilities.  Failure in flexure  occurs 
if earlier  failures in shear,  lateral  buckling,  or 
related  phenomena are  precluded. Also excluded 
are  reinforced  concrete  members with abnormally 
small or large  amounts of flexural  reinforcement  or 
steel  members with  high local  stress  concentrations 
or  members  fabricated  from  materials which a r e  
susceptible  to  brittle  fracture.  The  foregoing  ex- 
clusions  should be noted carefully  because  these  are 
conditions which should  be  avoided  insofar a s  
possible  in  the  design of protective  structures. 
Through  the  large  inherent  ductilities  usually  avail- 
able when flexural  failures  develop,  the  resistances 
required  for  a  given  loading  can  be  smaller  (Fig. 
V-1.31). Also  these  ductilities  can  imply  potentially 
large  compressibilities which may  induce  significant 
arching  across  the  member. 

V-2.3.3 Direct  Stress  and  Flexure in 
Combination 

The  members which most  frequently are   sub-  
jected  to  combined  flexure  and  direct  stress  are  the 
exterior  walls of a box-shaped  structure.  The 
problem  associated with the  analysis of such 
members  lies in determination of the  maximum 
stresses  produced in the  member by the  loads 
applied.  Normally  the  direct  stress  results  from  the 
reaction of the roof slab  tributary  to  the  wall.  Be- 
cause of the  inertia of the roof this  reaction  builds up 
relatively  slowly  to  a  maximum  value.  The  time  at 
which this  maxinlunt  value of the  reaction  develops  is 
essentially  equal  to  the  time of maximum  response, 
t,, (Ref. V-1.35) which is  specified a s  a ratio  to  the 
natural  period of vibration in Fig. V-1.31. It i s  
obvious  from  this  figure  that no generalizations  can 
be made in te rms  of the  absolute  value of the  time of 
maximum  response.  However,  from  consideration 
of the  natural  period of vibration of a  wall when it is 
subjected to an  axial  force, it is  apparent  that  the 

time of maximunl  response  for  the roof normally will 
be several  times  this  natural  period of vibration. It 
can  be shown (e.g.,  Ref. V-2.20) that when the  rise 
time of the  loading  (the  time of maxintum  response 
for  the roof in this  case)  is long in comparison with 
the  period of vibration,  the  dynamic  response  is 
essentially  the  same  as i f  the load were  statically 
applied.  Since, in addition,  the  duration of the  load- 
ing on the roof will  be long in comparison  to  the 
natural  period of vibration of the  wall,  the  maximum 
stress  produced by the  direct  stress  frequently  can 
be  assumed  to  remain unchanged until  the  maximum 
response of the wall  in flexure  is  reached. 

A s  a result of the  foregoing  reasoning  the  local 
s t resses  in the  wall  can be taken a s  a direct  sum of 
the s t r e s s  produced by direct  force  and  the  stress 
produced by flexure.  Consequently  the  behavior of 
most  members  subjected  to  the  effects of combined 
flexure  and  direct  stress  can  be  evaluated  from an 
axial  load-moment  interaction  diagram  constructed 
for  the  member.  The  construction of such  diagrams 
is discussed in Chapter  V-6. 

V-2.3.4 Combined  Shear  and  Flexure 

Failure in combined  shear  and  flexure  can  take 
several   forms depending upon the  structural  con- 
figuration  and  the  type of material  used  in  the 
structure. In steel  members  failure of this  type  is 
manifested by buckling of the web of a structural 
nlember, by crippling of the web near  the  support, 
and by lateral  buckling of the  compression  flange. 
For  reinforced  concrete,  failure in combined  shear 
and  flexure  is  manifested by pure  shear  near  the 
support, by diagonal  tension in the  region of relatively 
high shear  and  moment,  and by bond (slipping of the 
reinforcement  relative  to  the  concrete)  either in the 
region of high shear  or of high flexure.  These  types 
of failure  can  develop in any member in which the 
s t resses  induced by the loading are  primarily 
flexural. 

When failure by combined  shear  and  flexure 
develops, both the  strength  and  ductility of the 
member  generally  are  reduced below the  values 
which can  develop if the  same  member  fails i n  flexure 
alone.  Frequently it is  relatively  easy  and  econom- 
ical  to  prevent  premature  failure in conlbined  shear 
and  flexure.  For  example, web stiffeners  can be 
added  to  individual  steel  beams  or  stirrups  can be 
placed in individual  reinforced  concrete  beams. In 
other  cases,  such  as in flat  slabs,  it  generally  is not 
feasible  to  reinforce  the  member to preclude  these 
premature  failures. When this  condition  exists,  the 
size of the  member  must  be  increased  over  the 
dimensions  required  for  flexure  to  provide  the 
necessary  resistance.  This  required  increase  to 
res is t  a given  loading  results  from:  (1)  the  reduced 
strength; (2) the  normally  reduced  ductility;  and 
(3) the  shorter  natural  period of vibration  inherent 
in a  member of greater  depth  or  resisting  capacity 
(cf.  Fig. V-1.31). 
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Additionally, if the  reduction in ductility i s  
large,  it  is  possible  that  the  deformations  might not 
be  sufficiently  large  to  mobilize  arching in the  soil in 
the  vicinity of the  element. 

V-2.4 EFFECT  OF GROUND MOTION 

The  behavior of the  exterior  elements of a 
buried  structure  depends upon the  stresses  acting on 
them o r  the  relative  motions which develop  along  the 
entire  structure. In most  cases  these  phenomena  are 
paramount;  other  phenomena, a s  manifested by 
absolute  acceleration,  velocity,  and  displacement  at 
a  point,  generally have a negligible  effect on the 
exterior  structure. Yet these  last  parameters  are 
extremely  important in assessing  the  behavior of 
interior  elements  and of equipment or personnel 
located within the  structure.  The  characteristic of 
importance in visualizing  this  behavior  is  the 
mechanism by which the motion is  transmitted  to  the 
contents. 

Because of the  additional motion  induced by 
structural  response of the  exterior  frame,  it  is 
unusual  to find a structure with interior  floors 
mounted directly  to  the  exterior  surfaces.  More 
common i s  an  interior  frame which is  separated 
insofar a s  possible  from  the  exterior  structure. 
Generally  therefore  motion  reaches  this  interior 
frame by coupling of its  footings with the  medium. 
To reach  these  footings  the  stress wave must  "travel 
around"  the  exterior  structure,  and it  may be  modified 
thereby.  Also by design, or naturally,  the coupling 
between  the  footings  and  the  medium  may not be 
perfect,  thus  changing  the input to  the  footings as 
compared  to  the  motions in the  adjacent  medium. 
Inherent  energy  absorbing or damping  characteristics 
of the  foundations  seem  to  be  the  significant  parame- 
t e r s  which define  the motion which reaches  the 
interior  elements. 

The  motion  reaching  the  footings  becomes  the 
base  motion  to be applied  to a mathematical  model of 
the  interior  structure  and  the  principal  equipment  it 
supports. It i s  emphasized  that  the  mass  and  other 
characteristics of the  principal  equipment  must  be 
included  in  defining  this  mathematical  model.  Since 
heavy equipment  can  completely  change  the  motions 
imparted  to  the  entire  system by the  base  motion, 
completely  erroneous  conclusions  can  be  drawn if this 
equipment i s  omitted in the  analysis. In formulating 
this  model  it  also is extremely  important  that 
inherent  ductility  and  damping,  especially in the 
joints  between  individual  members,  be  included. 
Otherwise  the  motions  reaching  personnel  and  equip- 
ment  may  be  grossly  overestimated. 

If the  shock  motions  imparted  to  personnel  and 
equipment  can  be  estimated,  further  analysis  is 
required to determine  whether  particular  equipment 
will be  damaged.  This  analysis  is  complicated by the 
fact  that much equipment i s  a highly complex  assem- 
blage of mechanical  and/or  electronic  parts  and  that 

personnel in general  are  very  mobile.  This  com- 
plexity  and  mobility  make  necessary  certain 
generalities  regarding  the  vulnerability of classes of 
items which might constitute  the  structural  contents. 
In  general  these  vulnerabilities  are  assessed in te rms  
of a range of acceleration, of velocity, or of dis- 
placement. 

Providing  protection  for  the  contents of a 
structure  and  designing  interior  framing which i s  
physically  separated  from  the  protective  shell  are 
frequently  the  most  difficult  problems  to  attack. 
Much of the  effort in this  area  has  been  devoted  to 
defining  the  response  spectra  from  the  free  field 
motion. In this  section  are  presented  the  differences 
to  be  expected between the  spectral  motions in the 
free field  and  those  effective in the  behavior of 
structures  and  equipment, 

To  define  the  response  spectra  appropriate  to 
the  analysis of parts of the  structure  requires  con- 
sideration of what happens when the  free  field  motion 
acts  on the  structure. In this  regard much can be 
learned  from  previous  experience with earthquakes. 
Measurements which allow  the  determination of 
motions induced  in the  soil by an earthquake  have 
been  obtained in many earthquakes of various  inten- 
sities.  Analysis of structures  (e.g.,  Ref. V-2.21) 
which withstood  these  earthquakes  indicates  that if 
the  motions in the  soil had had their  full  effect on the 
structure it  could not have survived. I n  fact  the 
structures which survived had response  spectra 
significantly  less  than  those which would be  predicted 
on the  basis of the  ground  motions  measured by 
USCGS seismographs.  There  are  several  possible 
explanations for this  reduction. Among these  are: 
(If There  was  imperfect coupling between  the 
foundations  and  the  medium  such  that  the  foundations 
do not receive the full  effect of the  medium  motion; 
(2) Damping  within the  structure  significantly  re- 
duced  the  motions  transmitted  through  the  structure; 
and (3)  Minor  plastic  deformations  were  induced in 
certain  parts of the  structure  and  these  reduced  the 
motions in the  structure. 

Analyses  currently  are  underway which a r e  
directed  toward  more  detailed  explanations of the 
effects of the  structural  properties on the  motions 
imparted to structural   elements.   These  analyses  are 
summarized in Chapter V-4. 

V-2.5 EFFECT OF RELATIVE MOTIONS 

The  behavior of a buried  structure  can be 
influenced  greatly by relative  motions which develop 
in the  soil.  These  motions  are  produced  primarily 
by the  finite  transit  time of the  load  along  the  struc- 
ture;  one  part  is  loaded while another  part  has no 
load  acting on it. To resist  these  motions  the  struc- 
ture  must  act  somewhat  like  a box girder.  Alterna- 
tively if the  motions are  relatively  small,  zones of 
weakness  can be intentionally  provided in the  struc- 
ture  such  that  one  part  can move relative  to  another. 
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In either  case  it  is  necessary  to  estimate  the 
magnitude of the  motion  to be expected.  The 
following discussion  is  divided on the  basis of the 
direction of the  motion with respect  to  the  longitudi- 
nal  axis of the  structure. 

V-2.5.1 Longitudinal Motion 

The  effect of longitudinal  motion  already  was 
mentioned in Section V-1.4.1. A s  developed  there 
the  motion  itself i s  not as  important as the  shearing 
forces  developed a s  a result of the  relative  motion. 
This  results  from  the  fact  that  frictional  forces  are 
largely  independent of the  amount of motion  once 
motion  has  been  established.  Friction  forces a r e  
dependent  directly on the  normal  force  acting on the 
surface of sliding  and  the  angle of friction  between 
the two materials which a r e  sliding.  Evaluation of 
the  effects of longitudinal  motion  therefore  reduces 
to  estimating  the  magnitude of the  frictional  forces 
and  investigating  the  section of the  structure  corre- 
sponding  to  the  position of the  shock  front in the  soil 
a s  shown  in Fig.  V-2.31. 

Much more  complex, but related,  situations 
than  those  just  described  can  occur when a shelter 
is  located in a stratified  medium. In such a case  the 
action of the  structure  is  similar, but the  relative 
deformations  can  change  direction or change in 
magnitude  over  relatively  small  lengths of the  struc- 
ture. With the  shock  hitting  the  structure  end-on  the 
direction.of  the  shear  forces  pictured  in  Fig.  V-2.31 
conceivably could change  for  each  stratum.  For 
shock  striking  the  structure  side-on  lateral  dis- 
placements  could  change  drastically in each  stratum. 
For  thin  strata  these  differential  displacements 
could induce  large  stresses in the  walls of the 
shelter. 

V-2.5.2 Differential  Vertical Motion 

Lateral  motions in buried  structures  can 
develop as a result of the  conditions shown  in Fig. 
V-2.32. At point A on the  structure  the  stress wave 
in soil  has  progressed  to a point below the  structure 
while for  all  points on the  structure  to  the  right of B 
the  s t ress  wave has not reached  the  structure.  The 
length of s t ress   pulse  on a  plane  through  point A i s  
taken in the  figure a s  approximately  the  product of 
the  seismic  velocity  c  and  time  t.  This  is not exact 
since  the  velocity of the  portion of the wave  shown 

must  propagate with a  velocity  consistent with the 
air-shock  and  seismic  velocities.  However,  for 
most  soils  and  for  magnitudes of overpressure  gen- 
erally  considered  for  buried  structures,  the 
approximation  used  causes  relatively  small  error  in 
the  computed  displacements. 

Because of the  means by which the  s t ress  wave 
propagates, point A tends  to  deflect downward an 
amount  compatible with the  strain  induced in the  soil 
below the  structure.  This  deflection  steadily  de- 
creases  between  points  A  and B reaching  zero  at  B. 
For  t imes  greater than  t  the  deflection  at  A  in- 
creases  and  the  region  over which deflection  exists 
becomes  larger.  To  resist  this  relative  motion  the 
structure  must  possess  sufficient  flexibility to allow 
it to  deflect with the  surrounding  medium.  Alterna- 
tively  the  structure  must  possess  sufficient  strength 
to  resist  the  loads  associated with the  relative 
motion. 

For  stratified  soils  the  differential  displace- 
ment  along  the  length of the  structure  becomes  more 
complex, but the  general  ideas,  just  presented, 
remain  valid. 
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CHAPTER V-3 

DEEPLY-BURIED STRUCTURES 

For  structures  at  shallow  depths  the  predom- 
inant  effects  are  produced by airblast-induced 
ground  motion.  Behavior of deeply-buried  Structures 
i s  predominantly  controlled by the  directly-transmit- 
ted n1otio11. This is not because of the  burial but be- 
cause  deeply-buried  structures  become eCOnOmiCallY 
feasible only if extreme  protection is required;  such 
hardness  normally  implies  that  the  structure  be 
located  directly  under  the  crater of the  burst  where 
the  effects of most  importance  appear  to  be  those  in- 
duced by directly-induced  motion. 

The  least  costly  means of providing  structures 
at  large  depths would appear  to  be  the  use of aban- 
doned mines or natural  limestone  caverns.  Where 
such  cavities  do not exist in areas  where  strategic 
operations  must  be  located,  mining of tunnels  in  rock 
is  required. It also  is  conceivable  that  some  deeply- 
buried  structures  might  be  located i n  soil if the 
geologic  and  ground  water  conditions  at a s i t e   a r e  
favorable.  Even when the  structure is located in 
soil  at  great  depths (of the  order of perhaps 1000 ft) 
it would appear  that  tunneling  methods would be 
required. 

Consequently  the  structures  referred  to  in  this 
chapter  are  those which have  been  placed by tunneling 
methods at  great  depths.  Thus both the  depth of 
burial  and  the method of construction  distinguish  the 
problems  discussed  here  from  those  presented in the 
preceding  chapter. For high degrees of hardness  it 
would be  desirable  for  the  openings  to  be  relatively 
small. Unlined tunnels  in  competent  rock  appear  to 
afford a high degree of protection;  yet  even  for  static 
loads  a  lining  must  be  provided  for  openings in soil. 
Still  greater  protection  may  be  provided by placing 
protective  linings within tunnels  in  rock or heavier 
linings  than  required  for  static  loads in soil.   Pro- 
tective  linings  normally would be  nearly  cylindrical 
in shape  since  such  configurations  inherently  provide 
greater  strength  than  other  types  for  long-narrow 
openings.  Arched  configurations  also  might  be  ap- 
propriate, but a s  will  be  developed  later,  it  appears 
that a cylindrical  structure  can  be  conceived which 
will  provide some degree of shock  isolation  to  the 
contents of the  structure;  similar  shock  isolation  can- 
not be as readily  provided in arched  configurations. 
Additionally  for  small  operations a nearly  spherical 
opening might  be  appropriate. 

V - 3 . 1  STRESSES AND DISPLACEMENTS AROUND 
UNLINED OPENINGS IN ROCK 

V - 3 . 1 . 1  Static  Load 

For  many years  the  design of underground 
openings  was  accomplished  largely by t r ia l  and e r r o r  
methods. Only relatively  recently  has  the  classical 
theory of elasticity  been  applied  to  the  behavior of 
tunnels in rock. Now the  use of this  theory  and  the 
methods  dictated by it  seem  to  be widely accepted 
(Ref. V-3 .1 ) .  Under  elastic  theory  for  static  load, 
the opening  in a massive  rock  formation is assumed 
to  be a hole  in an infinite  plate.  As long as the  hole 
is located so that  the  cover  over  it is greater  than 
approximately  twice  the  largest  lateral  dimension  and 
the  hole is long compared with this  lateral  dimension, 
the  usual  assumption of plain  strain is reasonably 
good (Ref. V - 3 . 2 ) .  For layered  formations,  common 
to  sedimentary  deposits,  each  stratum is treated as 
a beam or  plate  loaded by i t s  own weight  (Ref. 
V-3 .1 ) .  For most  cases  involving  static  loads  this 
treatment  is  valid. 

The  discrepancies  between  the  theory  and ob- 
served  behavior  probably  can  be  attributed  more  to 
difficulties  in  assessing  the in situ  strength  and  state 
of s t r e s s  in the  rock  than  to  inappropriate  interpre- 
tation of the  theory.  Because of the  difficulties in 
defining  the in situ  conditions,  rather  large  safety 
factors  are  applied  in  the  design of mine  workings. 
Safety  factors  ranging  from 4 to 8 applied  to  the un- 
confined  compressive  strength or modulus of rupture 
appear  to  be  relatively  common. 

It appears  that  some  advantage of these  safety 
factors can be  taken  in  assessing  the  resistance of 
an  abandoned  mine  to  dynamic  loads. 

Determination of safety  factors  requires  con- 
sideration of two primary  variables: (1) variation in 
the  computed  loads  (including  effects of inaccuracies 
in the  methods of analysis  and of temperature,  creep 
and  related  phenomena)  and (2) variation  in  the 
strength of the  materials. Although safety  factors 
should  be  determined on the  basis of statistical anal- 
ysis, it  has  been  common in this  country  to  choose 
each  parameter which enters a design  conservatively 
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and  to  apply a safety  factor  to  the  over-all  design  in 
addition.  The  resulting compound value of safety 
factor  frequently  exceeds by some  multiple  the  ap- 
parent  safety  factor so that  the  actual  strength of a 
member  often  exceeds  the  actual  load on the  member 
by a large  margin.  Furthermore,  an  augmentation 
of the  strength  occurs  under  dynamic load because of 
the  increased  stress  produced by high strain  rates. 
Considering  all of these  combinations  suggests  that 
the  reserve  in  strength  over  the  static  load  might  be 
on the  order of the  apparent  safety  factor.  Since 
the  member  must  resist  the  static load  in addition to  
the  dynamic  load, it i s  conceivable  that,  for  apparent 
safety  factors  ranging  from 4 to 8 ,  the  reserve 
strength  available  to  resist  dynamic  load might be 
3 to 7 times  the  magnitude of the  static  load. 

On this  basis  an  existing  mine might be  capable 
of resisting a dynamic  load in the  vicinity of the 
opening which i s  3 to 7 times  the  static  load  implied 
by the  overburden.  For  example, a mine which 
proved safe at a depth of 1000 ft  in massive  rock  with 
unit  weight of 144 psf(1000  psi  static  load) might 
withstand  dynamic  loads of 3000 to 7000 psi. If some 
inelastic  action  is  acceptable,  even  higher  pressures 
may  be  resisted. 

Openings in Homogeneous Rock. To design 
openings  in  competent-massive  rock  for  static  loads 
requires  the  definition of the  stresses induced by the 
overburden.  For  openings  located  at  some  distance 
from  the  edges of the  geologic  formation or from 
major  faults,  the  vertical  stress,  uv,  can  be  defined 
in te rms  of the unit  weight of the  rock, w, and  the 
depth, y: 

" V = 1 Psi(+&+) (V-3.1)  

If the  opening is located in the hanging or foot wall of 
a fault  the  vertical  stress may not be  consistent with 
the  above  equation.  Here  the  tectonic  forces  must  be 
considered;  these  are  discussed in Section V - 3 . 1 . 3 .  
However,  since  it  generally  is not desirable  to  locate 
a protective  structure  within a major  fault  or  along a 
boundary  between two geologic  formations,  the  ver- 
t ical   s t ress  defined by the  above  equation i s  appli- 
cable  to  the  cases of interest. 

The  horizontal component of s t r e s s  (q) is 
more  difficult  to  evaluate.  Because  the  static  load 
produces a strain  in only one  direction,  the  horizon- 
ta l   s t ress ,  uh,  should be  related  to  the  vertical 
s t ress ,  uv, by the  relation  defined in Eq. V-3 .2  where 

is Poisson's  ratio. 

_ = -  Oh v 
u 1 - u  (V-3.2)  

V 

In Ref. V - 3 . 1  a value of Poisson's  ratio u of 0 . 2 5  is 
implicitly  recommended.  Thus: 

1 
"h = 3 "v (V-3.3)  

However,  for  rock a range of values  for  Poisson's 
ratio  from  -0.5  to +O. 5 have been  measured with a 
few  reported  values as high as +O. 95 (Ref. V - 3 . 3 ) .  
(A negative  Poisson's  ratio  implies  a  lateral  contrac- 
tion of a specimen when it is  subjected  to  longitudinal 
compression.) A value  higher  than +O. 5 is  theoret- 
ically  impossible  for  elastic,  isotropic,  homogeneous 
material.  The  recommended  value of 0.25 appears  to 
be a reasonable  average of the  test  results. Yet the 
problem of determining  the  horizontal  intensity of 
s t r e s s   i s  complicated  additionally by tectonic  forces; 
for  example, if the  rock opening i s  bounded laterally 
by open joints,  the  horizontal  stress  may  be  zero. 
On the  other hand near  the  bottom of an anticline,  the 
top of a syncline, or in the  vicinity of a fault or  in- 
trusion,  the  horizontal  stress may bear no relation 
to  the  vertical  stress; in some  cases  the  stress  com- 
ponents  may  approach  the  ultimate  strength of the 
rock, 

If tectonic  forces  are neglected  (these  forces 
will  be  discussed  later), a stress  state in rock 
caused by static  loads of the  type shown  in Fig. V-3.1 
will  result.  Normally,  the  variation  in  stress  over 
the  height of an opening can  be  neglected  because  this 
change is small  for  the  normally  small  height in- 
volved.  Therefore,  the  stress  state  to which an 
opening (circular) is subjected  can  be  represented as 
exemplified in Fig. V-3 .2 .  Stress  concentration 
factors,  defined as  the  ratio of the  tangential  stress 
at  the  edge of a  hole  to  the  vertical  stress  in  the  me- 
dium at  some  distance  from  the  hole,  have  been  de- 
termined by several  means  for  holes of various 
shapes.  Analytical  solutions  exist  for  circular,  el- 
liptical,  and  certain  ovaloidal  openings while photo- 
elastic  and  experimental  studies  have  defined  con- 
centration  factors  for  other  shapes.  These  studies 
are  summarized  in  Ref. V - 3 . 1  in  which three  ratios 
of horizontal  to  vertical  stress  are  considered, 
namely 0, 0 . 3 3 ,  and 1. These  results  are  sum- 
marized in Table V - 3 . 1  for  single  openings  and  in 
Figs. V - 3 . 3  and V - 3 . 4  for  multiple  parallel  open- 
ings. 

Horizontal 
Stress = tqh 

Vertical 
Stress = crv 

I 

FIG. P-3.1 DEAD  LOAD STRESSES IN HOMOGENOUS  ROCK 

67 



TABLE V-3.1 MAXIMUM STRESS CONCENTRATION FACTORS FOR OPENINGS IN INFINITE  ELASTIC, 
HOMOGENEOUS, ISOTROPIC PLATES  (Ref. V-3.1) 

Shape of 
Opening 

*Ratio of Horiz. Maximum Compressive Minimum Stress  on 
to  Vert.  Stress Stress on Hole Hole Boundary as 

in  Medium Boundary as Ratio Ratio  to Applied 
to Applied Vert. Vert.  Stress 

Stress  

Circular 

t Ellipse 
(Major  Axis 
Vertical) 
Width W  to 
Height H Ratio = 1/4 

Ellipse 
W/H = 1/2 

tEllipse 
W/H = 2.00 

tEllipse 
W/H = 4.0 

h a l o i d :  
W/H = 1/4 
t = 1.19 

= 4.19 
( = 0.19 

)Ovaloid: 

( = 1.10 
7 = 2.10 
f = -0.10 

W/H = 1/2 

3 .OO 
2.67 
2.00 

0.75 
(at  ends of minor  axis) 

2.00 
(at  ends of major  axis) 

8.00 
(at  ends of major  axis) 

2.00 
(at  ends of minor axis) 

1.70 
(at  ends of major  axis) 

4.00 
(at  ends of major  axis) 

5.00 
(at  ends of major  axis) 

4.60 
(at  ends of major  axis) 

4 .OO 
(at  ends of major  axis) 

9.00 
(at ends of major  axis) 

8.60 
(at  ends of major  axis) 

7.80 
(at  ends of major  axis) 

1.90 
(in  fillet) 

2.05 
(in  fillet) 

4.10 
(in  fillet) 

2 .oo 
(in  fillet) 
2.05 

(in  fillet) 
3.15 

(in  fillet) 

-1.00 
0 
2 .oo 

-1.00 
(at  ends of major  axis) 

0.60 
(at  ends of minor  axis) 

0.25 
(at  ends of minor  axis) 

-1.00 
(at  ends of major  axis) 

0.70 
(at  ends of minor  axis) 

1 .oo 
(at  ends of minor  axis) 

-1.00 
(at  ends of minor  axis) 

-0.33 
(at  ends of minor  axis) 

1 .oo 
(at ends of minor  axis) 

-1.00 
(at  ends of minor  axis) 

-0.50 
(at  ends of minor axis) 

0.50 
(at  ends of minor  axis) 

-1.00 
(at ends of major  axis) 

0.70 
(at  ends of major  axis) 

0.40 
(at  ends of minor  axis) 

-0.90 
(at  ends of major  axis) 

0.25 
(at  ends of major  axis) 

0.70 
(at  ends of minor  axis) 

*Maximum s t r e s s  in medium  applied  vertically 
tParametric  equations  for  ellipse:  x = W cos 6'; y = H sin 8; Q = 0" is  horizontal 

SParametric  equations for ovaloids: x = t cos B + I cos 38; y = g sin B - f sin 3B;O = 0" is  horizontal 
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TABLE V-3.1 (cont'd) 

Shape of *Ratio of Horiz. Maximum  Compressive Minimum Stress  on 
Opening to  Vert.  Stress Stress on Hole Hole Boundary as 

in Medium Boundary as Ratio Ratio  to Applied 
to  Applied Vert.  Vert.  Stress 

Stress 

$Ovaloid: 
W/H = 2.0 

E = 2.10 
77 = 1.10 
r = -0.10 

$Ovaloid: 
W/H = 4.0 

= 4.19 

1 = -0.19 
q = 1.19 

+Rectangle 
Width W  to 
Height H 
Ratio = 1/4 

t Rectangle 
W/H = 1/2 

tRectangle 
W/H = 1.0 

tRectangle 
W/H = 2.0 

tRectangle 
W/H = 4.0 

3.40 
(at  ends of major  axis) 

3.20 
(in fillet) 

3.20 
(in  fillet) 

4.80 
(at  ends of major  axis) 

4.50 
(at  ends of major  axis) 

4.10 
(in  fillet) 

2.50 (in  fillet) 
1.50 (along long side) 
3.50 (in  fillet) 
1.25 (along  long side) 
6.15 (in fillet) 
0.70 (along  long  side) 

2.60 (in  fillet) 
1.75 (along long side) 
3.10 (in  fillet) 
1.50 (along long side) 
4.70 (in  fillet) 
1.50 (at  ends of 

3.05 (in fillet) 
2.00 (along  sides) 
3.10 (in fillet) 
1.65 (along  sides) 
3.80 (in fillet) 
0 (along  sides) 

4.00 (in fillet) 
2.50 (center  short  side) 
4.00 (in  fillet) 
2.00 (center  short  side) 
4.60 (in  fillet) 
1.50 (center  short  side) 

5.30 (in  fillet) 
2.90 (center  short  side) 
5.50 (in fillet) 
2.65 (center  short  side) 
6.20 (in  fillet) 
2.00 (center  short  side) 

major  axis) 

-0.90 
(at  ends of minor  axis) 

-0.30 
(at  ends of minor  axis) 

0.75 
(at  ends of minor  axis) 

-0.90 
(at ends of minor  axis) 

-0.50 
(at  ends of minor  axis) 

0.40 
(at  ends of minor  axis) 

-1.00 
(at  ends of major  axis) 

0 
(at  ends of major  axis) 

1.90 
(at  ends of major  axis) 

-1.00 
(at  ends of major  axis) 

-0.20 
(at  ends of major  axis) 

1 .oo 
(along long side) 

- 1.00 
(along  top  and  bottom) 

-0:30 
(along  top  and  bottom) 

(along  top  and  bottom) 

-0.70 
(along long side) 

-0.20 
(along long side) 

1 .oo 
(along long side) 

(along long side) 

(along long side) 

(along long side) 

0 

-0.80 

-0.30 

0.80 

*Maximum s t r e s s  in medium  applied  vertically 
tA l l  openings  have  rounded  corners  with fillet radius  equal to 1/6 the  short  dimension 
§Parametric  equations  for  ovaloids: x = [ cos Q + f cos 36; y = 77 sin 6 - f sin 3Q;O = 0" is horizontal 
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RATIO WALL THICUNESS (L) TO TUNNEL DIAMETER (El  
FIG P-3 2 APPROXIMATE  DEAD  LOAD 

STRESSES ACTING ON TUNNEL 
FIG. P-3.3 STRESS CONCENTRATION  FACTOR FOR PARALLEL 

CIRCULAR OPENINGS 

The  data in Fig. V - 3 . 3  for  multiple-cylindrical 
parallel  openings a r e  developed  directly  from 
Ref. V - 3 . 1 .  On the  other hand Fig. V - 3 . 4  was  de- 
veloped by approximate  procedures which involve  a 
consideration of the  difference  between s t r e s s  con- 
centration  factors  for  rectangular  openings with 
rounded  corners  (Table V-3.1)  and  for  circular 
openings  (Fig. V-3.3).  

The  approximate  procedure  used in developing 
Fig. V - 3 . 4  consisted of assuming  that  the  ratio of 
s t r e s s  concentration  factor  for  a  single  rectangular 
opening  to  that  for  a  single  circular opening was  also 
valid  for  parallel  rectangular  openings  compared  to 
parallel  circular  openings.  Therefore,  Fig, V - 3 . 4  
is  merely  a plot of the  ratio of the  maximum  stress 
concentration  factors  for  rectangular  openings of 
varying  dimensions  from  Table V - 3 . 1  to  the  maxi- 
mum s t r e s s  concentration  factor  for  a  single  circu- 
lar  opening.  Choice of the  maximum  stress  concen- 
tration  factor  for  rectangular  openings  may not be 
realistic  since  this  maximum  occurs in the  fillet  at 
the  corners; yet Fig. V - 3 . 4  represents  a  set of ap- 
proximate  values,  and  similar  curves  can  be  con- 
structed  for  other  conditions  summarized in Table 
V - 3 . 1  if it is  felt  that  other  concentration  factors 
are  appropriate  for  rectangular  openings. 

The  limiting  conditions  for  the  stress  concen- 
trations  implied  in  Figs. V-3 .1  and V - 3 . 4  were 
imposed on the  basis of the  fact  that when the  walls 
separating  individual  openings  become  small in 
thickness they  may be effectively  considered a s  
non-existent; thus ,  the  upper  limit  was  assumed  to 
correspond  to an ovaloid or rectangle which circum- 
scribes  the  boundaries of the  entire  parallel  tunnel 
configuration. 

In Ref. V-3 .1  the  analysis o r  design of rooms 
and  pillars  for  openings in homogeneous  rock i s  
based on the  dimension of a  pillar  required  to  sup- 
port  the  vertical  stress  applied  to  the  tributary  area 
of the  pillar.  This  procedure  merely  corrects for 

I I 1 I I 1 I I 
1.00 2 00 3 00 4 00 

R P T ~ O  WIDTH (a )  TO HEIGHT (HI OF TUNNEL 

FIG. P-3.4 FACTOR  RELATING COMPRESSIVE STRESS 
CONCENTRATION  FACTOR  FORRECTANGULAR 
OPENINGS TO THOSE FOR CIRCULAR  OPENINGS 

the  area  reduction  at  the  location of the  room  and 
pillar  complex;  that is, in forming a room  and  pillar 
configuration, a certain  area of rock is removed. In 
plan  view  the  reduction of area  corresponds  to  the 
a rea  of the  rock  removed as compared with the  total 
area.  A s  recognized in Ref. V - 3 . 1  large  s t ress  
concentrations  must  develop in the  columns. An ap- 
proximation  to  these  stress  concentrations  can  be 
developed by considering  a  room  and  pillar  complex 
to be a set of intersecting  parallel  rectangular  tun- 
nels in two directions.  This  approximation  employs 
the  data shown  in Figs. V - 3 . 3  and V - 3 . 4  to  define 
stress  concentration  factors which  might develop in 
pillars.  For  large  pillars,  the  intersecting  set of 
tunnels  will  have  little  effect on the  stresses  for the 
primary  set of tunnels  developed at  some  distance 
from  the  corners of the  pillars.  Use of this  fact  en- 
ables  one  to  fix  the  lower  limit of the s t r e s s  concen- 
tration  factor.  This  limit  corresponds  to  the  factor 
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for a single  set of parallel  rectangular  tunnels  sub- 
ject  additionally  to  the  limitation  that  this  stress 
concentration  factor  cannot  be  less  than  that  consis- 
tent with the  reduction in area  alone. At the  other 
extreme is the  case involving small  pillars  where  the 
s t r e s s  concentration  factor  at  the  corner of the  pil- 
lar might approach a magnitude  equal  to  the  product 
of the  appropriate  stress  concentration  factors  for 
- each  set of parallel  tunnels.  Obtaining  the  approxi- 
mation,  therefore,  reduces  to  defining a rule by 
which the s t r e s s  concentration  factor  decreases  from 
the  product of the  two  appropriate  values  to  the  value 
for a single  set of parallel  rectangular  tunnels. 
Study of the  data  presented  in  Ref.  V-3.1  and  theo- 
retical  solutions  similar  to  those  presented i n  Ref. 
V-3.2  suggest  that  the  product of stress  concentra- 
tion  factors would be  appropriate  for a ratio of pillar 
width to opening width less  than  0.25.  For  values of 
this  ratio  greater  than  2.25  the  stress  concentration 
factor  for  the  single  set of parallel  tunnels  might  be 
appropriate,  Finally by recognizing  that  for  prac- 
tical  cases  the individual stress  concentration  factors 
for  each  set of parallel  rectangular  tunnels which 
form a room  and  pillar  configuration  are  nearly  the 
same,  the  product of the two factors  can  be  approx- 
imated as the  square of either  factor.  Thus,  to ob- 
tain  values  for  the  stress  concentration  factor in a 
pillar with dimensions  between  the  extremes  defined 
above,  the  value of the exponent applied  to  the  maxi- 
mum s t r e s s  concentration  factor  for one set of paral- 
lel  openings  was  assumed  to  vary  from 2 to 1 as a 
linear  function of the  ratio of pillar  to  opening width. 
This  approximation  accounts both for  the  reduction  in 
area  and  for  the stress concentration;  consequently 
it i s  somewhat  more  conservative  than  the  procedure 
which accounts only for  the  reduction in area.  The 
results of this  approximation are presented  in  Fig. 
V-3.5  for  equally-spaced  pillars  and  in  Fig.  V-3.6 
for  unequally  spaced  pillars. 

Whenever  relatively long tunnels are con- 
structed  it  is  almost  inevitable  that  some  jointing  and 
faulting  will  be  encountered  even in a homogeneous 
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FIG. P-3.5 STRESS CONCENTRATION  FACTOR FOR ROOM AND 
PILLAR CONSTRUCTION WITH EQUALLY SPACED 
PILLARS 

formation. When such  geologic  structures  are  en- 
countered,  safety  dictates  the  provision of conven- 
tional  rock  supports  such as rock  bolts (with wire 
mesh if the  area is highly jointed or brecciated), 
steel   sets with steel   or  t imber lagging, or  reinforced 
concrete. 

Openings in Stratified Rock. In conventional 
mining  practice  openings in stratified  formations  fol- 
low either  the  strike  or  the dip of the  individual 
s t ra ta  whenever  possible. Of these two it   seems 
probable  that following the  dip  (the  angle which the 
planes of the  strata  form with reference  to a hori- 
zontal  plane) is preferable  since  the  strata  above  the 
tunnel  act as beams  spanning  the opening (see  Fig. 
V-3.7). When the  tunnel  follows  the  strike  (the  azi- 
muth of the  planes of the  strata),   certain  strata  are 
made  discontinuous by driving  the  tunnel;  thus  these 
strata must  act  essentially as cantilevers in the 
vicinity of the opening. Normal  practice  frequently 
requires  that  these  discontinuous  strata  be  fastened 
by rock  bolts  to  adjacent  strata.  For  protective 
structures  located in these  formations,  rock  bolts 
would appear  to  be  mandatory. 

In selecting a site  for a protective  tunnel  in 
stratified  rock  advantage  can  be  taken of the  stability 
provided by the  strata by running  the  tunnel in the 
direction of the  dip of the  beds. In this  situation, 
and as long as  the  aspect  ratio  (the  ratio of the long 
to  short  dimension  in  the  planes of the  strata) is 
greater  than two, which normally would be  true, 
each  bed  acts as a  beam  fixed  at both ends  spanning 
the roof (or back) of the  tunnel.  The  end  fixity i s  
provided by the  vertical  stress  produced by the  over- 
burden. When a bed  which is more  flexible  than  the 
one  immediately  above  it  forms  the roof of the  tun- 
nel,  this  normally  thinner  stratum  tends  to  deflect 
away from  its  neighbor so that if bond and  shear  be- 
tween  the  strata  are  neglected  the  safety of the roof 
is defined by the  resistance of the  single  stratum. 
The  stresses and  deflections  in  such  a  stratum  can 
be  defined in te rms  of the  effective unit  weight of the 
stratum, we, the  span, L ,  the  thickness, t,, and 
the  modulus of elasticity, E,, of the  critical 
stratum.  The  maximum  stress  produced by flexure 
i s  urnax, the  maximum  shearing  stress if T max, and 
the  maximum  deflection i s  6 max.  For  elastic  be- 
havior  these  quantities as  presented in Ref. V-3. l 
become: 

3weL 
Tmax = 4 

WPL 
4 

(V-3.4) 

(V-3.5) 

(V-3.6) 
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FIG. P-3.6 STRESS CONCENTRATION  FACTOR FOR  ROOM AND PILLAR CONSTRUCTION WITH UNEQUALLY SPACED PILLARS 

In Ref. V - 3 . 1  it i s  concluded,  since  the  ulti- 
mate  tensile  strength is small  compared  with  the 
ultimate  compressive or shearing  strength,  that  the 
resistance of a slab which is long compared with i ts  
thickness,  is  governed  only by Eq. V - 3 . 4  and  thus 
the  permissible width of tunnel  opening is defined by 
setting Umax equal  to  the  modulus of rupture  deter- 
mined by laboratory  tests of the  rock. 

Because  the  physical  properties of rock   a re  
similar  to  those of plain  concrete  (Ref. V-3 .4 )  the 
problem of defining  the  safe  opening might be  con- 
siderably  more  complicated for most  tunnels  than  the 
procedure  just  described  since  their width generally 
would be  small  compared with the  thickness of the 
overlying  stratum. At certain  spans, which a r e  not 
clearly  defined  for  beams of plain  concrete,  the  ulti- 
mate  resistance  is  governed by a complex  function of 
the  maximum  principal  tensile  stress  and not  by the 
maximum  shear  or  flexural  stress  alone  (Refs. 
V - 3 . 5  and V-3 .6 ) .  This  particular  behavior  has re- 
ceived much attention  in  the  investigation of the 
static  and  dynamic  characteristics of plain  and re- 
inforced  concrete, but the  actual  phenomena  control- 
ling  the  behavior  still are not clearly  understood. 
This  problem  has not been  studied in detail for rock, 
but the  similarity  between  rock  and  plain  concrete 
suggests  that  the  materials might have  comparable 
behavior. 

A summary  and  extension of analyses of the 
principal  stresses in elastic,  homogeneous  beams 
either  simply  supported  or  fixed  at both ends  is  given 
in Ref. V-3.7.  Yet experimental  studies of concrete 
indicate  that  the  maximum  tensile  principal  stress 
alone i s  not the  controlling  parameter  in  defining  the 
failure; a s imilar  condition  might be expected  for 
rock so  that  the knowledge of the  principal  stresses 
may not be  particularly  valuable  at  this  time.  Never- 
theless,  certain  design  approximations  used  for  plain 
or  reinforced  concrete  may  be  helpful in defining  the 
resistance of rock  strata: (1) failure in pure  shear,  
as defined by Eq. V-3.5, occurs when a maximum 
shear   s t ress ,  T develops  which is equal  to  approx- 
imately 15 to 20 percent of the unconfined compressive 
strength; (2) failure in flexure  can  be  expected when 
the  maximum  flexural  stress, urn defined by Eq. 
V-3.4, reaches  the  modulus of r u 3 u r e ;  and (3) failure 
in combined shear  and  flexure  (classically  called 
diagonal  tension)  might  occur  at a s t r e s s  (in  psi) 
equal  to 2 6  where uu is   the unconfined compressive 
strengthin  psi. When this  last  limiting  stress is re- 
lated  to  the  average  stress,  vrnax,  the following equa- 
tion i s  obtained which defines  the  limiting  conditions 
for  "diagonal  tension"  (notation  was  defined for Eqs. 
V-3.4 to V-3.6). 

v -  max - 2 psi J"-= 1 psi 7 weL (V-3 .7 )  
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The  study of the  physical  properties of rock  in 
Ref. V - 3 . 3  indicates  that  the  modulus of rupture 
might  be  approximately 10% of the unconfined com- 
pressive  strength. However the  modulus of rupture 
may  vary  over wide limits  from  zero  for a jointed 
formation  to  perhaps as high as 200/0 or  more of the 
unconfined compressive  strength. If 1% is taken as 
a reasonable  average  for  an  unjointed  stratified  for- 
mation,  certain  relations  among  the  equations  for 
strength  can  be  derived  to  define  the  controlling  con- 
ditions.  These  relations  indicate  that  the  safety of 
the roof is controlled by Eq. V - 3 . 4  unless: 

( A i )  (7) (t ) - 200 
150 pcf fi < 1 

(V-3.8) 

(V-3.9) 

Equation V - 3 . 8  defines  the  conditions  under which the 
safety of the roof is governed by Eq. V-3 .5  ; i .e.,  by 
the  maximum  shearing  stress. It is interesting  to 
note  that  for  the  conditions  assumed,  the  maximum 
shearing  s t ress  as a governing  criterion  for  failure 
requires  that  L/tc  be less than  unity.  Equation 
V - 3 . 9  defines  the  conditions  under which the  safety of 
the roof i s  governed by Eq. V-3 .7 ;  i .e . ,  by resis-  
tance  to  "diagonal  tension". 

A f i rs t  look at  the  last two equations  indicates 
that  the  modulus of rupture would control  the  safety 
of any  tunnel  in a stratified  formation. If only a 
single  bed is involved this  probably is true. How- 
ever when a relatively stiff  bed supports many layers 
which  have less stiffness  than  the  supporting  stratum, 
pure  shear  or "diagonal tension"  map  become  crit- 
ical. For  this  situation,  the  previously  derived 
equations may be  valid  provided  that  an  effective unit 
weight of the  critical  stratum  can  be  defined.  This 
effective unit weight includes both the  actual weight of 
the critical layer  and  the weight of the  supported 
layers. By noting that  the  deflection of all layers 
must  be  equal if they  remain  in  contact,  an  expres- 
sion  for  the  effective unit  weight of the  critical  slab 
can  be  defined (Ref. V-3 .1 ) .  In Eq. V-3 .10  the  sub- 
script  c  refers  to  the  critical  slab  and  the  subscript 
n refers to  each  supported  slab; we is  the  effective 
unit weight on the  critical  slab. 

Ectc Wntn n=c 

2 "  

w =  e n (V-3.10) 
P m .3 L, r . L  n n  n= c 

Application of Eq. V-3 .10  requires a t r ia l   and  error  
procedure  in which the  number of slabs  is   succes- 
sively  increased  between  each trial until a maximum 
value  for  the  effective unit  weight is obtained.  Equa- 
tion V-3 .10  should  provide a conservative  result 
since  the  span of all slabs is assumed  the  same  while 
the  span of each  slab  should  decrease with increasing 
height  above  the  tunnel as a result of the  change in the 
radius of curvature  for  each  successive  slab.  The 
failure  and  deflections of a roof consisting of several 
layers  can  be  determined  directly  from  Eqs. V - 3 . 4  
through V - 3 . 9  by substituting We, calculated  from 
Eq. V-3 .10 .  

Parallel  tunnels  or  room  and  pillar  construc- 
tion  in  stratified  formations  can  be  approached  sorne- 
what differently  than  it is for  homogeneous  forma- 
tions. In stratified  formations  the  rock  between  par- 
allel tunnels  or  the  pillars  support  the  flat  slabs of 
the  roof. At f i rs t  a moment  distribution  or  another 
similar  indeterminate  analysis  might  suggest  itself 
for analyzing  the  stress  state in the  columns. How- 
ever, by virtue of the  direction of stratification as- 
sumed  here  there  probably would be  an  insignificant 
amount of moment  transferred  to  the  walls  or  pillars. 
Recognizing  that  the  stiffness of the  walls  or  pillars 
generally  will  be  very  large  compared with the  stiff- 
ness of the roof allows  an  analysis  wherein  the  walls 
or  pillars  carry  the  total  effective  force on the  por- 
tion of the roof tributary  to  them.  This  effective 
force  already would have  been found in  the  analysis 
of the roof slabs; i.e., by application of Eq. V-3 .10 .  
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V-3.1.2  Damage  Mechanisms  and  Dynamic 
Load 

In this  section  are  discussed  the  analytical 
methods which define  the  damage  mechanisms as- 
sociated with tes ts  of openings in rock. Most of the 
discussion  pertains  to  tunnels  located  in  homogene- 
ous  rock. If the  acoustic  properties of individual 
layers are similar,  the  problem  should  be  similar 
for both stratified  and  homogeneous  formations. If 
the  acoustic  properties of the  layers   are  not similar 
shock  transmission  becomes  extremely  complex  and 
generalizations  cannot  be  made.  However, a large 
reduction in the  energy  reaching  the  structure  may 
occur as a result of reflections  and  refractions  be- 
tween  individual s t ra ta  of differing  acoustic  proper- 
ties, so that  locating a protective  structure below 
these  strata  may  be  advantageous. 

Stratified  Formations.  Based on the hypoth- 
esis  presented in Section  V-3.1.1  for  the  use of fac- 
to rs  of safety  inherent in the  conventional  design  for 
static  loads of tunnels in a  stratified  formation with 
matched  acoustic  impedance,  a  factor of safety of 4 
to  8 or  perhaps  more, would imply a reserve in 
strength  for  resisting  dynamic  load in existing  tun- 
nels  or  openings of 3 to 7 times  the  effective unit 
weight  in Eq. V-3.10.  That is, the  static  load  de- 
velops only a  fraction of the  strength  available 
leaving  a  significant  reserve in strength  to  resist  the 
dynamic  load. Yet consideration of the  practical 
conditions  normally  encountered  indicates a limit of 
effective unit weight of the  order of 100 psi, which 
corresponds  to an effective  thickness of material 
above  the  tunnel of approximately 100 ft;  consequently 
the  apparent  maximum  intensity of dynamic s t ress   to  
cause  failure of a tunnel with a normal  factor of 
safety of 8 would be of the  order of only 700 psi. 
This  limit of strength  probably  exists  irrespective of 
the  difference in loading  mechanism  associated  with 
static  and  dynamic  loads  since  normally  a  similar 
factor of safety would be  used  to  define  for  static 
loading,  the  dimensions of the  various  components 
(roof,  pillars,  etc.) of the  opening.  The  use of rock 
bolts  to  provide unity of action of several  layers  may 
somewhat  increase  the  maximum  intensity of dynamic 
s t ress .  

On the  other hand for new construction in 
stratified  media  where  the  maximum  dimension of 
opening is  smaller than  the  least  dimension of the 
stratum in which the opening i s  located,  the  resist- 
ance  to  dynamic  load  can be evaluated in  the  same 
manner  as it i s   for  an opening in a homogeneous 
formation. 

Homogeneous  Formations.  The  analysis in 
Ref.  V-1.31, which has been extended  and  corrobo- 
rated with minor  changes  and with extensions in Refs. 
V-3.8  through  V-3.11,  indicates  that  the  stress  con- 
centrations  around  circular  openings  caused by nu- 
clear  explosions  and by static  loads, which produce 
planar  stress  distributions in the  vicinity of the  open- 
ing, are  practically  identical. A s  long a s  the  hole i s  

small enough that  the  duration of the  dynamic  loading 
is several  transit  times  across  the  hole  this  result of 
the  analyses  should  be  valid;  this  duration of loading 
i s  implicit  in  the  analyses  cited  and  such a duration 
would normally  be  required  to  provide  equivalence 
between  static  and  dynamic  conditions if it  exists. 
For  nuclear  explosions of even  kiloton  yield  this  cri- 
terion would imply  openings of extraordinary  dimen- 
sions.  Consequently  it  may  be  assumed  that  stress 
concentrations  comparable  to  those  induced by static 
loads,  summarized  in  Table  V-3.1  and in Figs.  V-3.3 
through  V-3.6, might be  expected  to  develop for a l l  
dynamic  loads  considered  here. 

Furthermore,   tests of many materials  indicate 
that  the  strains  retain a distribution  consistent with 
elastic  theory  even  after  Hooke's law no longer  ap- 
plies  (see  for  example  Ref.  V-3.12).  This  suggests 
that  the  theoretical  stress  concentration  factor  is 
directly  equivalent  to  a  strain  concentration  factor 
even as the  material  approaches  failure. 

Based on this  postulate  and  observations of the 
behavior of materials in general,  simple  procedures 
can be developed  for  defining  the  limiting  ranges  at 
which the  types of damage  observed in tunnels  de- 
velop.  The  limits of these  types of damage  were  de- 
fined in Section  V-l. 5. l ,  and  they are  summarized 
here: 

e Limit of Closure 

e Limit of General  Compression  Failures 
Limit of Local  Compression  Failures 

e Limit of Damage 

The  limit of closure  develops when the  rock 
surrounding  the  opening  can  begin  to  sustain  the 
s t ress  wave  without crushing in a partially-confined 
state.  The  rock is not totally confined because of 
the  presence of the  opening.  Partial  confinement, 
however, i s  developed  because of the  finite  time  re- 
quired  for  the  rock,  as  it   crushes,  to move into  the 
opening.  The  effect of this  partial  confinement  can 
be  accounted for by assuming  a  strain  (in  the  free 
field a t  a  range  corresponding  to  the  location of the 
opening)  at  failure which i s  approximately  three 
times  the  strain  corresponding  to  the unconfined 
compressive  strength of the  rock. At least  such an 
assumption  gives  results  consistent  with  the  results 
in  Ref.  V-1 . 2 5 .  Also  the  assumption  is  justified by 
tes ts  on concrete  (Ref.  V-3.13),  assuming  that  con- 
crete  behaves in a  manner  similar  to  rock.  Normal- 
l y  for  most  types of rock,  this  strain is between 0.5 
to 1.0%. 

The  limit of general  compression  failure 
occurs  where  the local compressive  strains  around 
the opening equal  the  strain  at  ultimate  conditions  in 
partially-confined  compression. If c U  i s  the  strain 
corresponding  to  the  ultimate  strength in unconfined 
compression  and Kc i s  the  maximum  compressive 
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strain  concentration  around  the opening, general 
compression  failure  ceases when the  strain  in  the 
free  field E is: 

(V-3.11) 

As it i s  in the  case  immediately  preceding,  3eU  for 
most  rock  types is between 0.5 to 1.0%. 

Local  compression  failure  develops as long as 
the  local  compressive  strain  around  the  opening  ex- 
ceeds  the  strain  corresponding  to  the  ultimate 
strength  in unconfined compression. With the  nota- 
tion  previously  defined  the  limit of this  type of dam- 
age  occurs when: 

(V-3.12) 

For most  types of rock EU is between  0.2  to  0.4%. 

Finally  the  limit of damage  develops when the 
local  tensile  strains  around  the opening equal  the 
strain E corresponding  to  the  effective  tensile 
strength of the  rock;  thus if Kt is  the  appropriate 
maximum  strain  concentration  factor  for  tension, 
the  limit of damage  occurs when: 

t 

E t  
' = K t  (V-3.13) 

Normally  for  most  types of rock E is between 0.03 to 
0.06%. t 

The  stress  concentration  factors in Table 
V-3.1  and  in  Figs.  V-3.3  through  V-3.6 are approx- 
imately  consistent with a dilatational wave  with a 
duration of at   least   several   transit   t imes (Ref. 
V-1.31). For a  tunnel  located  directly below the 
burst,  it would appear  that  the  dilatational wave 
would be  most  important  in  causing  damage.  Even 
for  tunnels  located  at  great  depths but removed  from 
the  point of detonation,  the  dilatational wave, whether 
it  be  directly-  or  airblast-induced,  probably is of 
greater  importance in causing  damage  than  the  shear 
or Rayleigh  waves.  This  assumption is based on the 
empirical  observation  that  the  initial  part of the 
s t r e s s  wave has a greater  intensity  than  the  later 
parts,  and  the  dilatation wave propagates with the 
highest  velocity. 

Experimental  evidence  (Ref.  V-1.53)  from 
Operation  Hard Hat  (a contained  nuclear  detonation  in 
granite),  supports  the  preceding  postulate. In Ref. 
V-2.7  approximate  relations  based on high explosive 

tests  and  nuclear  tests  (Rainier  and  Hardtack) are 
developed  for  the  directly-induced s t r e s s  wave in 
rock  produced by a nuclear  surface  burst.  The  peak 
radial  strain, E ,  in  the  free  field  is  defined in this 
reference in te rms  of the  distance,  R,  from  the  cen- 
t e r  of a surface  burst  and  the weapon yield, W 

1000 ft) 5/2 (-) w 5/6 
E cz 0.001 in./in. (- R 1 mt (V-3.14) 

This  expression  is  independent of the  seismic  veloc- 
ity in the  medium;  however,  other  parameters  (such 
as stress,  particle  velocity,  etc.)  are not independ- 
ent of seismic  velocity.  Using  this  strain in Eqs. 
V-3.4  through  V-3.13  with e U  = 0.003  in./in.  and 
Et = 0.0005 in. /in.  (Ref.  V-3.4)  and with Kc = 3  and 
Kt = -1 (for a circular  tunnel  with  Poisson's  ratio of 
zero which it would approach  for a jointed  formation) 
gives  ranges  measured  from  the  point of detonation 
of approximately 420, 640, 1000  and  1300  ft  for  each 
of the  successively  larger  limits of damage  for open- 
ings  in  granite  subjected  to  the  effects of a 1-mt  sur- 
face  burst.  These  limits  mean  that  an  unlined  tun- 
nel  in  granite would be  completely  closed by the  det- 
onation of a 1-mt  burst  at  the  surface if it  were420ft 
or less  below the  surface,  damaged beyond useful- 
ness at 640 ft  or  less,  damaged but repairable  at 
1000 ft or less,  and  undamaged  at  1300 ft  below the 
surface. 

1 Comparison of these  ranges with data obtained 
in  high  explosive  tests of nearly  circular  tunnels in 
granite  (Ref.  V-1.25) is presented  in  Table  V-3.2. 
The high explosive  data  in  the  table are  scaled  using 
a nuclear-high  explosive  yield  equivalence of 0.06 as 
derived in Ref.  V-2.7.  This  yield  equivalence  was 
obtained  from  empirical  data  obtained in granite  and 
sandstone  for high explosive  charges  and in tuff for 
nuclear  detonations.  The  Hard Hat event  indicates 
the  equivalences in Ref.  V-2.7 are  reasonable, but 
there now exist only limited  theoretical  information 
on the  problem of nuclear-high  explosive  yield 
equivalence. 

d e s c r i d .  . experlments  indicate  that  damage  may 
occur by spalling when the  stress wave strikes  the 
free  surface of the  tunnel.  Laboratory  experiments 
(Ref. V-3.14) confirm  the  possibility of spalling  for 
certain  tunnel  configurations which have  nearly  plane 
surfaces but indicate  that  spalling  might not occur 
for  circular or nearly  circular  openings.  However, 
in  an  actual  circular  tunnel  spalling might also  occur 
because of the  inherent  irregularities in the  shape 
and  because of the  possible  weakening of the  rock  in 
the  vicinity of the  tunnel  resulting  from  the  construc- 
tion,  Thus,  the  possibility of spalling  should  always 
be  considered. 

Spallin In addition  to  the  types of failure  just 



TABLE V-3.2 COMPARISON OF MEASURED* LIMITS OF DAMAGE  IN GRANITE (SCALED TO  A  1-mt 
SURFACE BURST) WITH THOSE COMPUTED BY METHODS DEVELOPED IN SECTION V-3.1.2 

Limit of Limit of General  Limit of Local  Limit of 
Closure  Compression  Failure  Compression  Failure Damage 

(ft) (ft) (ft)  (ft) 

Measured* 440 800 1200 1300 

Computed 420 640 1000 1300 

*The  measured  values  are  from high explosive  tests  (Ref. V-1.25) converted  to be equivalent  to a 1-mt  surface 
burst  using  a  yield  equivalence of 0.06  (Ref. V-2.7). 

Definition of the  conditions  under which a spall 
might  form  is shown i n  Fig.  V-3.8a  in which a com- 
pressional wave is  intersecting a free  surface  there- 
by generating a tensile wave in  the  opposite  direction. 
For  the  geometry  and  notation in the  figure,  the 
thickness of the  spall, D, is given by: 

- 
D = k  L 

P 
(V-3.15) 

The  case shown in Fig.  V-3.8a  represents a 
plane  compressive  stress wave of triangular  shape 
intersecting a plane  surface. In such  a  case  the 
boundary  conditions  require  that a tensile wave be 
generated which travels  back  into  the  medium  from 
the  free  surface.  Whenever  the  tension  exceeds  the 
compression by an amount  equal  to  approximately  the 
ultimate  tensile  strength of the  rock in situ a spall 
will  form.  Multiple  spalls  can  form by the  same 
process  since,  after  one  spall  forms, a new f ree  sur- 
face  is  formed  and if the  length of the  compressive 
pulse  is  sufficient  the  net  tension  can  again  exceed 
the  ultimate  tensile  strength  causing a new spall of 
depth, D, to  form  for  the  triangular  incident  wave. 

In Fig.  V-3.8a a simple  triangular  shape is 
used  to  approximate  the  incident  compressive  stress 
wave.  The  actual stress wave normally  decays  ex- 
ponentially with time,  and  it  may  exhibit a finite  r ise 
time as well as high frequency  variations of s t r e s s  
superimposed on the  decaying wave. The  length of 
the  triangle shown in the  figure is adjusted  such  that 
the  impulse of the  triangular  approximation  equals 
the  impulse of the  actual  curve.  The  rise  time  is 
neglected which results in spall  thickness which may 
be  smaller  than  the  actual  thicknesses if the  presence 
of high frequency  components  are  neglected. Con- 
sideration of the  effect of high frequency  variations 
of s t r e s s  in the  incident wave, however,  complicates 
theover-al1picture;at  the  moment  there  appears  to  be 
no theory which predicts  accurately  these high 
frequency  effects. 

Finally it  should be noted that  the  representa- 
tion of the  spalling  process in Fig.  V-3.8a  also il- 
lustrates what tends  to  happen  locally  for  tunnel 
cross-sections with curved  surfaces. 

Reflected  Tension 

D D  

Length Of Pulse=Lp L p - 2 0  

D = Thickness Of Spal l=  2 L 
= Ultimate  Tensile  Strain 
= Peak  Compressive  Strain  In  Medium 

4 - 
- 2 E  p 

FIG. P-3.80 ASSUMED CONDITIONS  PRODUCING SPALLING 

Unless  the  characteristics of the  medium  and 
of the  explosion a r e  such  that  they  produce  a  stress 
wave which approaches a true  shock  (Fig.  V-3.8a), 
it i s  highly doubtful  that  a  spall*  can  form.  This  re- 
sults  from  the  thickness of spall, D, becoming,  for 
finite  rise  times  (Fig.  V-3. ab), so  large in cornpar- 
ison  to  the  size of the  opening  that  the  potential  spall 
cannot  enter  the  opening. Most rocks   a re  not capable 
of developing  and  sustaining a true  shock wave; thus 
this  mechanism  generally  does not develop  for  the 
cases  considered  here. 

When spalling  can  occur,  the  spalls  produce  a 
loading on the  lining which is consistent with the  ki- 
netic  energy of the  spall,  or if several  spalls  can 
form  the  sum of the  kinetic  energies in the  individual 
spalls.  The  kinetic  energy  in  each  spall is defined 
by the  mass  and by the  momentum  trapped in it  at  the 
time  it  forms. 

*This doubt is  supported by the  absence of pieces of 
rock  embedded in the  packing in Event  Hard  Hat. 
The  work on  which this  evidence  is  based  has  just 
been  completed,  and  a  detailed  report  is  under  prep- 
aration  at  the  time of this  writing. 
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G COMPRESSION WAVE 

REFLECTED 

FIG. P-3.8b SPALLING WITH FINITE RISE TIME 

V-3.1.3 Tectonic  Forces 

Tectonic  forces  are  those  associated  with  the 
diastrophism  producing  geologic  formations  and 
those  generated  through  the  subsequent  history of the 
formation.  For  example, when an  igneous  intrusion 
is formed,  large  compressive stresses exist in the 
molten  rock as a result of the  confinement  offered by 
the  surrounding  material. A s  the  intrusion  cools 
however  large  tensile  stresses  can  develop  through 
shrinkage  and  differential  solidification.  The  folding 
of the  earth's  crust as a result of igneous  intrusions 
and/or  shifting of the  earth's  mantle  produces  large 
residual  stresses  in  the  rock.  These  residual 
stresses  subsequently  may be modified  through 
erosion  or  faulting. 

Residual  stresses in any  rock  formation  can 
impair  its  ability  to resist static  and  dynamic 
stresses  around  tunnels  located  in  it.  Therefore  it 
is important  to  have  some  measure of the  natural 
state of stress  to  determine  the effect of these 
s t resses  on the  behavior of any  tunnel  located in the 
rock. In general  it is impossible  to  estimate  quan- 
titatively  these  stresses  from  surface  and  subsurface 
studies of the  geology.  Instead  it is necessary  ac- 
tually  to  measure  these  stresses.  Methods  are  con- 
stantly  being  developed  for  making  these  measure- 
ments  (see  for  example  Ref. V-3.15). 

If the  tectonic  forces  are  measured,  their ef- 
fect  should  be  considered  in  assessing  the  behavior 
of a tunnel. When these  forces  cannot  be  measured 
beforehand,  an  estimate of their  magnitude  should  be 
made  to assess the  behavior of tunnels.  It  should  be 
kept in mind,  however,  that  current  methods  for  de- 
signing  underground  openings are based on strengths 

of cores  of rock  determined  in  the  laboratory.  Fre- 
quently  the  variation  in  strength  between  individual 
specimens is greater  than  the  stress  associated with 
the  tectonic  forces.  Furthermore,  the  laboratory 
specimens  might not be  representative of the in situ 
conditions  because  removal of the  core  releasis- 
stresses  trapped  in  it  and  this  stress  relief  might 
affect  the  strength of the  core.  This  speculation is 
based on the  often  observed  Bauschinger  effect  in 
metals in which overstraining  in one direction  sig- 
nificantly alters  subsequently  observed  strength 
properties when a test is conducted on the  same 
specimen  with  stresses  applied  in  the  opposite  direc- 
tion.  Therefore,  although  the  effect of tectonic 
forces  should  always be considered,  it  frequently 
will  be found that  their  influence is less than  the un- 
certainties in the  controlling  strength  parameters. 
Consequently  it  seems  reasonable  to  include  tectonic 
forces  in  the  analysis only  when it is suspected  that 
their  influence is larger  than  the  uncertainties  in  the 
strength  properties  used  in  the  over-all  analysis. 

V-3.2 STRESSES AND DISPLACEMENTS AROUND 
LINED TUNNELS IN SOIL AND  ROCK 

V-3.2.1 Dead Loads 

Linings  for  tunnels in competent  rock  normally 
will not be  subjected  to  any  static  load  except  the 
weight of the  lining  itself  and of any  backpacking 
placed  around  the  lining.  For  tunnels in soil  or in 
heavily  fractured  rock  the  lining  must often support 
a relatively  large  static  load. 

Whether  the  lining i s  located  in  soil  or highly 
fractured  rock,  it would appear  that  the  forces 
reaching  the  lining would be  similar.  According  to 
Terzaghi  (Refs. V,Z. 4 and V-3.16) the  vertical  com- 
ponent of stress,  uv,  acting on a tunnel  with  horizon- 
tal  span B, height h, and  in  soil  (or  rock) with an 
angle of internal  friction, (D, unit  weight, w, and 
cohesive  strength, E, is: 

GV <w  0 .50B+0.58h - f  -)  (V-3.16) ( 
If the  tunnel  is  rectangular  the  vertical  walls  can  be 
treated as if they  were  retaining  walls of height  h 
subjected  to  an  additional  surcharge  equal  to 0,. 
For  circular  or  nearly  circular  tunnels  the  static 
load  produces a nearly u_niform s t r e s s  around  the 
tunnel which is equal  to uV. 

Any structural  lining  must  resist  these  static 
stresses.  Also  the  circular  linings  must  have suf- 
ficient  flexural  strength  to  account  for  any nonuni- 
formity of loading which might  develop as a result of 
nonhomogeneities  in  the  soil or the  construction  pro- 
cedures  used.  These  nonuniformities  cannot  be  gen- 
eralized so that i n  design  practice a percentage of 
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the  vertical   stress depending upon the  site  conditions 
normally is assumed.  Normally  the  nonuniform 
s t r e s s   i s  taken as 10?~ of the  vertical   stress but in 
plastic  soil or so-called  squeezing  ground  it  may  be 
several  times  the  vertical  stress. 

V - 3 . 2 . 2  Dynamic  Loads 

In addition  to  the  static  load,  the  structural 
lining  must  resist  the  effects of the  dynamic  loading 
produced by the  blast.  The  blast  loading on the 
lining  may  be of extreme  intensity  near  the  crater. 
On the  other hand as the  limit of damage is  ap- 
proached,  the  loading on a lining in competent  rock 
might  consist only of the weight of a block of rock 
which was  dislodged  from  the roof with zero  initial 
velocity.  Providing  structural  integrity  against  this 
latter  hazard,  frequently  termed  rock  drops, is a 
simple  problem.  Normally  wire  mesh  held  in  place 
by conventional  rock  bolts  will  protect  against  this 
hazard. 

Also at great  depths below the  surface  in  soil 
the  s t ress  wave may  attenuate  significantly as a re- 
sult of dispersion or dissipation so that  the  intensity 
of stress  reaching  the  tunnel  is  relatively 
insignificant. 

Therefore, of primary  concern in this  section 
a r e  the  loads  imparted  to  liners  in  rock  and  soil  at 
ranges  relatively  close  to  the  center of the  burst. In 
rock  the  loads  imparted to the  linings are  those as- 
sociated with crushing  and  spalling of the  rockaround 
the  tunnel  surface. In soil  the  range in loads  to  be 
considered  is not as clearly  defined as in rock. 

Relative  Compressibility. Although it i s  in- 
herently  important,  an  interesting  limiting  condition 
can  be  approximated by neglecting  the  acoustic  im- 
pedance  between  a  lining  and  the  surrounding  mate- 
rial .   This condition  might  be  determined by con- 
sidering  the  compressibility of the  lining  relative  to 
the  compressibility of the  material  replaced by the 
lining.  This  approach  is  most  easily  formulated  for 
a cylindrical  configuration. For a uniform  hydro- 
static  stress  field in the  vicinity of a  tunnel,  equating 
the  circumferential  strain in the  cylinder of material 
removed  to  the  approximate  circumferential  strain 
in the  lining  yields  (Ref. V-3 .2 ) :  

t - E m  1 Em 
r E t  1 - v m - E p  (V-3.17)  
_" -=- 

where  t is the  thickness of a  solid  lining, r i s  the 
mean  radius of the  lining, E, i s  the  modulus of 
elasticity of the  medium, Ep is   the  modulus of elas- 
ticity of the  lining  material  and U, is  Poisson's  ratio 
for  the  medium. If, a s   i s  likely,  the  stress in the 
medium  surrounding  the  tunnel i s  not hydrostatic,  a 
much  thicker  lining is  required  to  obtain  matched 
compressibility  since  the  lining would be  subjected  to 
relatively  large  flexure. 

From  Eq. V-3 .17  it  may  be  seen  that  the  ratio 
of thickness  to  radius  for  a  solid  lining would have  to 
be  very  large  for  a  structure  located in competent 
rock  since  Em  and Ep would be of the  same  order of 
magnitude. On the  other hand, for  soil,  Em  probably 
would be  at  least  an  order of magnitude less  than  E@ 
or the  ratio of thickness  to  radius  for  a  solid  lining 
might be of the  order of 10%. As  discussed in Sec- 
tion V - 3 . 1 . 3 ,  increasing  the  compressibility of a 
structure in soil  might  significantly  enhance  the 
arching.  However,  at  the  moment  it  is not clear 
how arching  in  soil  depends on the  compressibility. 
Because of the much smaller  compressibility  re- 
quired  to  match  the  rock  replaced as compared  to 
soil, it is doubtful  that  increasing  the  compress- 
ibility of a  lining  in  rock would significantly  influence 
the  forces  acting on the  lining.  Also,  it is difficult 
to  place  a  lining in competent  rock which will  be in 
continuous  contact with the  rock  face.  Therefore,  it 
would appear  that  a  concept  other  than  compress- 
ibility  must  be  used  to  evaluate  the  behavior of a 
lining in competent  rock. 

Loads  Produced bv Deformation of Rock 
Openings. If a lining in rock is placed  such  that suf- 
ficient  clearance is provided  between  the  outer sur -  
face of the  lining  and  the  surface of the  rock  cavity 
to  allow  deformations of the  rock  to  occur without 
contacting  the  lining,  the  load  reaching  the  lining 
will  be only that  imparted by the  spalls which might 
form.  However,  at  ranges  from  the  detonation  ap- 
proaching  those  associated with closure of the  rock 
opening  it  appears  impossible  to  provide  sufficient 
space  to  prevent  the  deformed  surfaces of the  cavity 
from  contacting  the  lining;  an  energy  absorbing  filler, 
or packing,  must  be  provided  in  the  space  between 
rock  and  lining  to  resist  the  deformation  and,  in 
doing so, to  act with the  lining  in  absorbing  the 
energy in the  failed  rock  and  to  distribute  the  load 
more  uniformly  over  the  surface of the  lining. At 
longer ranges, well beyond where  closure of a tun- 
nel is expected,  an  integral  lining in contact  with  the 
rock  can  provide  sufficient  resistance  to  prevent  the 
failed  rock  from  entering  the  tunnel. 

A s  a  means of determining  the  properties  re- 
quired in the  total  lining  system  (the  interior  lining 
and  the  packing, if any,  surrounding  it),  it  appears 
adequate  to  provide  in  the  lining  system  sufficient 
energy  absorbing  potential  and  sufficient  thickness of 
packing  to  accommodate  both  the  energy  associated 
with the  failure  and  the  deformations of the  surround- 
ing rock.  The  energy  associated with the  failure of 
the  surrounding  rock,  whether  it  be  part of a homo- 
geneous o r  stratified  geologic  formation,  may  be 
taken  approximately as the  total  strain  energy which 
would have  been  induced by the  s t ress  wave in  the 
core of rock  replaced by the  total  lining  system. 
Computation of the  total  strain  energy  requires  first 
estimating  the  effective,  compressive  stress-strain 
relation  for  the  rock in situ;  the  area  under  this 
stress-strain  curve between zero  strain  and  the 
strain  consistent with the  distance  from  the  detona- 
tion  to  the  tunnel  (computed  from Eq. V-3.14)  i s  
multiplied by the  total  volume of the  rock  replaced 
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by the  structural  system. It appears  adequate  to 
take  for  the  effective,  compressive  stress-strain 
curve  that  curve  defined by unconfined compressive 
tes ts  on small, sound cylindrical  cores  taken  from 
the  rock; at the  moment  it  appears  that  the  effect of 
jointing on the  strength so defined  and  the  confine- 
ment which exists in situ  are  largely  compensating. 

The  inward  displacement of the  rock  surround- 
ing an opening accompanying  the  failure of the  rock 
is  difficult  to  estimate  from  the  data now available 
(Ref. V-1.25 or V-1.53). Yet it  seems  clear  (Ref. 
v-3.17) that  this  displacement is caused by the 
bulking,  or  increase  in  volume, of some  volume of 
rock  extending beyond the  surfaces of the  opening. 
This  bulking  increases  from  essentially  zero at the 
limit of local  compression  failure  to  large  values at 
the  limit of closure.  Therefore,  because  this  bulk- 
ing,  and  the  associated  deformation,  cause  the  more 
severe  loading on the  lining,  integral  linings in con- 
tact with the  rock  can  be  expected  to  survive  at a 
range  slightly  greater  than  that  associated with the 
limit of local  compression  failure. At lesser ranges 
the  deformations  accompanying  the bulking are   l a rger  
than  can  be  accommodated without failure of a con- 
ventional  integral  lining.  Thus,  energy  absorbing 
packing  must  be  interposed  between  the  surface of 
the  rock  and  the  outer  surface of the  lining if survival 
without structural  damage is to  be  provided at   ranges 
less than  the  limit of local  compression  failure. 
Limited  data now available  (Ref. V-3.17) indicate  that 
for  structural  survival  the  packing  thickness  must 
range  from  approximately  one-tenth of the  radius of 
the  rock  opening  at  the  limit of local  compression 
failure  to  approximately one-half the  radius of the 
rock opening a t  the  limit of general  compression fail- 
ure.  Also  it  appears  sufficient  for  design  purposes 
to  assume  a  maximum  deformation of the  rock  caused 
by bulking of one-half  the  required  thickness of the 
packing.  The  minimum  deformation of the  rock 
caused by bulking occurs on a line  nearly  perpendic- 
ular  to  a  line  through  the  axis of the  tunnel  and  the 
point  where  maximum  deformation of the  rock  occurs. 
This  minimum  deformation is small,  and  for  design 
purposes,  it  frequently may be  assumed  to  be  zero. 

These  deformations  produce  strains in the 
packing  which, in turn,  develop  the  stress on the  in- 
terior  structural  lining.  However,  the  subsequent 
deformation of the  interior  lining  alters  the  strain in 
the  packing  and  consequently  the  stress  distribution 
on the  structural  lining.  This  complex  problem of 
interaction  is  discussed  briefly in the following 
section. 

V-3.2.3 Lined  Tunnels with Energy  Absorbing 
Packing 

Lined  tunnels  with highly energy  absorbant 
packing  interposed  between  the  lining  and  the  rock are 
required  to  survive  structurally  the  effects within the 
range  defined by the  limit of general  compression 
failure  and  the  limit of local  compression  failure. 
This  structural  system  must  resist  the  energies  and 

deformations  associated  with  the failure of the 
surrounding  rock.  For  design  purposes  these  phe- 
nomena  may  be  treated  separately: (1) the  thickness 
of the  packing  required  to  accommodate  the  defor- 
mation is defined  in  the  discussion  preceding;  and (2) 
the  required  strength of the  packing  is  defined by the 
energy  in  the  volume of rock  replaced by the  total 
lining  system. 

To  provide  an  optimum  amount of energy  ab- 
sorption  the  packing  material  should  ideally  have a 
rigid-plastic  stress-strain  curve of the  type shown  in 
Fig. V-3.9. Also shown in Fig. V-3.9 are  the  types 
of stress-strain  curve which a r e  obtained in the  tests 
of granular  materials (confined in a cylinder),  and of 
certain  foamed  plastics  (such as rigid  polyurethane). 
(The  curves shown are  derived  from  tests  conducted 
at  the  University of Illinois which a r e  not yet pub- 
lished.)  Some lightweight concretes  (such as cellular 
neat  cement  and  vermiculite  concrete)  have  resist- 
ance  characteristics  similar  to  those of plastic  foam. 
However,  the  lightweight  concretes  generally a r e  
highly permeable,  and  precautions  must be taken  to 
prevent  their  becoming  saturated if they are   used as 
packing  materials. 

Because  the  packing  should have a much  higher 
potential  to  absorb  energy  than  the  interior  struc- 
tural  lining,  little  error  is  introduced if the  energy 
absorption of the  structural  lining  is  ignored in com- 
puting  the  required  energy  absorption in the  system. 
For  an  ideally  rigid-plastic  material  (or  approxi- 
mately  for  plastic  foams  up  to  locking),  the  energy 
absorption  per unit of surface area Ef  can  be  written 
in  terms of the  thickness  tf,  the  strain ~f (at  locking 
in  plastic  foams)  and  the  plastic  resistance: 

Ef = rf e f  tf (V-3.18) 

The  resistance  required in the  packing  material rf 
is defined by equating  Eq. (V-3.18) to  the  total  strain 
energy  defined by the  effective  stress-strain  for  the 
rock  expressed in te rms  of the unit surface  area  for 
the  core of rock  replaced by the  total  structural 
system. 
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FIG. P-3.9 SCHEMATIC  REPRESENTATION OF STRENGTH 
PROPERTIES OF MATERIALS FOR TUNNEL  ISOLATION 
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The  interior  structural  lining  enclosed  in  the 
packing  must  possess  sufficient  strength  and  buckling 
resistance  to  develop  the  strength of the  packing. 
Evaluation of the  required  strength  requires  assum- 
ing the  proportions of the  interior  lining  and  com- 
puting  the  resistance of this  lining  to  combined axial 
load  and  flexure.  To  provide  optimum  resistance 
this  lining  normally  will  be a right-circular  cylinder 
or  a capsule  consisting of a  right-circular  cylinder 
with hemispherical  ends.  Because  the  deformations 
of the  bulking  rock a r e  nonuniform,  the  deformation, 
and  consequently  the  stress, in the  packing is non- 
uniform.  Thus,  the  interior  lining is subjected 
initially  to a nonuniform stress  distribution.  For 
design  purposes  this  nonuniformity  may  be  assumed 
to  cause  the  lining  to  deform in the  pattern of a sine 
wave with  two complete  waves  developing in the 
circumference (Fig. V-3.10). Further  the  stress 
may  be  divided  into two components,  one a uniform 
component  q  and  the  other a sinusoidal  component  p. 
The  sinusoidal  component  p,  causes  the  dominant 
flexure, but as a result of the  curvature,  the  uniform 
component  also  produces  bending. If the  total  de- 
flection of the  lining is d while  the  maximum  defor- 
mation of the  surface of the  rock is Am and  the  mini- 
mum  deformation A ,  then  the  strains  produced in 
the  packing  and  the  associated  stresses  are as 
shown in Fig. V-3.11 wherein  tf is the  thickness of 
the  packing. As indicated  in  the  figure  (Fig. V-3.10) 

the  strain  in  one  direction is - while a t  a point 

90" removed  the  strain is - * + ' ; the  corresponding 
s t resses   a re   the  sum of p  and  q  and  the  difference 
between  q  and  p,  respectively.  The  deformations 
8 and  the  stresses in the  packing  and in the  adjacent 
lining  must  be  compatible.  Thus,  a  solution is 
determined by assuming  various  values of 8 and 
computing  the  corresponding  values of p,  for  the 
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FIG. X-3.10 DEFORMATION  OF  LINING  AND  PACKING 

q = UNIFORM COMPONENT OF WCKING STRESS ON LINING 

p,= VARYING COMPONENT OF PACKING STRESS ON LINING 
/ 

FIG. P-3.11 LOAD-COMPRESSION RELATION FOR PACKING 

packing.  This  defines a curve of p, as a function of 
6 , which is plotted on the  same  coordinates as the 
load-deformation  diagram  for  the  interior  lining 
(Fig.  V-3.12).  The  solution is defined by the  point 
(p1, 6 1) where  the two curves  cross as indicated  in 
Fig.  V-3.12. 

Buckling of the  interior  lining  may  be  investi- 
gated  conservatively,  (possibly too conservatively), 
as if the  interior  lining  were a cylinder  subjected  to 
a uniform  external  pressure  equal  to  the  plastic 
resistance of the  packing.  For  this  case  (Ref.V-3.18) 

3  El 
qcr = - - 3 - 'f (V-3.19) 

where 
qcr = uniform  pressure  causing  buckling  to  be 

imminent 

E = modulus of elasticity of lining  material 

1 = moment of inertia of lining 

r = mean  radius of lining 

rf = plastic  resistance of packing 

Since  the  lining  must  have  at  least  this  buckling 
resistance  an  initial  trial  section  for  the  lining  can  be 
obtained by computing  the  section  required  to  pro- 
vide  the  requisite  buckling  resistance  and  increasing 
the  thickness  or  moment of inertia of this  section by 
an  arbitrary  amount. 

OEFORMATION, 8 

FIG. P-3.12 LOAD-DEFORMATION  RELATION FOR LINING 
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The  buckling  load defined by Eq. V-3 .19  is The  use of a packing  material  to  surround  the 
conservative  since  it  neglects  completely  the  elastic lining  has  some  advantage in reducing  the  peak 
restraint  provided by the  surrounding  packing. A accelerations  and  velocities  imparted  to  the  interior 
brief  study  has been made of this  problem by the lining; however limited  data  (Ref. V-3.19)  indicate 
writers  (Ref. V-3.17) ,  and  the  equations a r e  highly that  any  reduction  is  relatively  small,  being g the 
nonlinear. most a factor of 2 reduction  in  acceleration with - 

essentially no reduction in  displacement o r  velocity. 
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CHAPTER V-4 

SINGLE-DEGREE-OF-FREEDOM SYSTEMS 

V-4.1 INTRODUCTION AND GENERAL PHILOSOPHY 

This  chapter  presents  the  methods of solving 
for  the  dynamic  response of single-degree-of-freedom 
systems  (Fig. V-4.1), and  indicates  the  important 
conclusions which may be  drawn  from  these  solutions. 
At f i rs t  it might appear  that  the  development in this 
chapter  is  backward:  The  conclusions  are  presented 
prior  to  the  detailed  discussion of the  methods of 
solution.  The  emphasis  here  is  used  to  circumvent 
some of the  potential  misconceptions  frequently  in- 
herent in  the  classical  procedures.  The  source of 
these  possible  misconceptions  can  be  illustrated by 
enumerating  the  steps  normally followed in the 
solution of a  particular  problem: 

Firs t ,  most structures  and  individual  elements 
a r e  so complex  that  certain  idealizations a r e  needed 
to  reduce  the  design  to  a  tractable  problem.  Usually 
the  idealization  results in a relatively  simple  math- 
ematical  model.  Second,  the  physical  properties of 
the  element  are  characterized in some way based on 
an  estimate of the  manner  in which the  structure 
responds  to  the  forces  and  motions. Most  often 
these  characterizations  require  the  specification 
of the  strength,  ductility,  and  other  physical  proper- 
t ies  of the  materials  used in the  structure. Next, the 
forces  and  motions  imposed on the  structure  must  be 
inferred.  Finally  an  analysis  is  performed  using  the 
model,  the  estimated  structural  characteristics,  and 
the  inferred  forces  and  motions.  The  model of the 
structure  selected, which frequently  depends upon the 
loading  and  motion, may not represent  the  actual 
member  under  its  actual  loading.  Estimates of 
strength  and  stiffness  may e r r  by a  large  amount 
since it i s  well  documented  that  the  strength  charac- 
ter is t ics  of structural  materials  made  under  the  same 
specification  can have a  variation of commonly 25 to 
3% from  a  minimum  value.  Variations  may  be  even 
larger  between  the  forces  and  motions  actually  sus- 
tained  and  those  inferred. At first  glance  all of these 
factors may suggest  a  hopeless  situation, but actually 
it  is  little, if any,  worse  than  the  perhaps  more 
familiar  cases  normally  encountered by the  engineer.. 
Instead,  these  factors  dictate  against  the  use of anal- 
yses which a r e  quite  sensitive  to  changes  in  the  con- 
tr.olling parameters;  most  classical  methods of anal- 
ysis  possess  this  sensitivity.  Furthermore,  most 
classical  procedures  require  that  the  detailed  dimen- 
sions  and  characteri’stics of the  element  be known; 
thus,  the  properties of the  element  must  be  literally 
guessed  at  before  the  analysis  can  proceed.  This 
last  observation  is  the  crux of the  problem: If a 
shrewd  assumption  can  be  made  for  the  properties 
required in a structure,  then no further  analysis 
need be made.  The  damage-pressure-level  equation 

and  associated  methods,  including  the  use of the 
“response  spectrum”  analysis,  provide  systematic 
means of determining  the  properties  required in a 
structure. At the  same  time  they  allow  rapid  ap- 
praisal of the  effects of changes in the  controlling 
parameters. 

On the  other  hand,  classical  methods  cannot  be 
dismissed as unimportant  since  they  are  the  basis of 
the  damage-pressure-level  equation  and  associated 
methods.  In  fact  the  damage-pressure-level  equation 
represents  the  complete  spectrum of solutions  gained 
from  application of methods of conventional  dynamic 
analysis  to  single-degree-of-freedom  systems. 

At this  point,  it  also is important  to  emphasize 
a basic  premise of the  field of protective  construction 
in  general:  Except in those  relatively  rare  instances 
where  large  deflections  will  compromise  the  func- 
tional  character of the  element,  some  inelastic  action 
of structural  components  must  be  allowed in the  de- 
sign.  Justification of this  premise  can  be  illustrated 
by a simple  example: If a simple  oscillator  (Fig. V- 
4.1) is  subjected  to  a  step-pulse of force with infinite 
duration  and if elastic  behavior  is  maintained,  the 
minimum  resistance  required  at  yielding  is  nearly 
twice  that  required when large  inelastic  action is 
allowed in the  same  oscillator.  Generally  providing 
twice  the  resistance  at  yielding in a given  structure 
constitutes a luxury which may, in te rms  of total  cost, 
mean  that  the  structure  cannot  be  built;  other  solu- 
tions  may  prove  significantly  less  expensive. 

R = f (ul 

X ,  i,Y 
u = y - x  

Y I Y 9 Y  

FIG. P4.1 SINGLE-DEGREE-OF-FREEM3M SYSTEM OR SIMPLE 
OSCILLATOR 

V-4.2 MATHEMATICAL MODELS OF COMPLEX 
STRUCTURAL SYSTEMS 

Detailed  study of the  single-degree-of-freedom 
(SDF) system or model is important  for two reasons: 
(1) Many complex  structural  systems  can  be  idealized 
as  simple  oscillators  provided  that  care is taken  in 
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specifying  the  properties of the  idealized  model;  and 
(2) a  wealth of knowledge has  been  developed  for  the 
simple  oscillator. Once the  structure  is  designed by 
assuming  it  to  act as a  SDF  system,  an  analysis  using 
a more  complex  model is  possible if it is  desired. 

V-4.2.1 Approximation of Loading  and  Response, 
Elastic  Systems 

Consider a simply-supported  beam  sub- 
jected  to a uniformly  distributed  load a s  shown in 
Fig. V-4.2. Ideally  the  uniform  loading  develops,  for 
example, when airblast  is  traveling in a direction  per- 
pendicular  to  the  axis of the  member.  (For  beams of 
practical  length  it  has  been shown (Ref. V-4.1) that 
the air shock  velocity is  such  that  little  error  is  intro- 
duced if a uniform  loading is assumed  even when the 
airblast is traveling  parallel to the  axis of the  member.) 
At any  instant of time, it is easily shown that  the  load- 
ing is  represented by the  following  Fourier  series 

(V-4.1) 
n = 1,3,5 ... 

wherein  p i s  the  magnitude of the  applied  load,  x is 
the  coordinate  measured  from  the  support,  and  L is 
the  span of the  beam. Use of the  familiar  differential 
equation  developed  in  strength of materials  for  elastic 
behavior: 

Pn 4 E - 3  (V-4.2) 

leads  to  the  following  series  defining  the  deflection 
at  the  center of the  beam, yb, if the  load is  statically 
applied. 

where 

E = modulus of elasticity of material in beam 

I = moment of inertia of cross  section of beam. 

P 

I 

FIG. P-4.2 SIMPLY SUPPORTED BEAM SUBJECTED TO  A UNIFORMLY 
DISTRIBUTED  LOAD 

Incidentally  this  series,  for  the  case  under  consider- 
ation,  must  yield 

- 5PL 
4 

'b - 384EI 

Now consider two limiting  conditions  for 
the  variation of the  loading with time: (1) a step 
pulse of force with infinite  duration  (Fig. V-4.3) and 
(2) an  impulse ( F i g .  V-4.4). From  the  solutions 
developed in Section V-4.3.1 it  can  be shown that 
Eqs. V-4.4 and V-4.5 represent  the  solutions  for  these 
two limits  respectively, when there   is  no damping. 

- - 4PL 
4 m  

' b - 5  1 + (1 - c o s y )  sin 
nn 

li n = 1,3,5 ... 
(V-4.4) 

= 4pL4 2ntl . 2nt . na 
m 

Y b = F c  
- ' n = 1,3,5 ... 

deflection  at  center  line  for  step  pulse of 
infinite  duration 

deflection  at  center  line  for  impulsive 
loading 

time 

duration of impulse 

natural  period of vibration in the nth mode 

, in  which m = mass of beam 
n n  
per unit of length. 

Alternatively Eq. V-4.5 can  be  written in te rms  of the 
impulse i: 

It  should  be noted that Eq. V-4.5 is valid only when tl 
is much less  than  Tn. 

The  maximum  values of deflection  from  Eqs. 
V-4.4 and V-4.5 can  be  determined by combining  the 
effects of all of the  modes, of which there is an  infinite 
number. When only the  first mode is considered,  the 
maximum  deflection  for  the  step  pulse  has  the  mag- 
nitude 

- 
ybl (first mode) = - 8pL4 

5 n E1 
(V-4.6) 

83 



e r r o r  in bending  moment  can  be much larger .   For  
most  structures  subjected  to  the  effects of nuclear 
weapons of current  operational  size,  the  loading  ap- 
proaches  the  case of a  step  pulse of loading  with 
infinite  duration  for which the  errors  inherent  in  the 
beam  considered  become  generally  insignificant. 

T I M E ,  t 
- 

FIG. P-4.3 STEP-PULSE  LOADING OF INFINITE DURATION 

When there is no damping,  there  may be a time  t  for 
which all of the  infinite  modal  components a r e  in 
phase.  Then  the  additional  deflection due to  the  higher 
modes,  as  a  ratio of the  first  mode component ex- 
pressed in Eq. V-4.6,  i s  equal  to or less  than 

53 

% =  2 1 3 = 0.00452  (V-4.7) 
Y 

I1 = 3,5,7 ... 
since  the  coefficient  in  front of the  summation  sign 
i s  the  same,  and  precisely  equal  to  the  right-hand 
side of Eq. V-4.6.  

Similarly,  the  additional  deflection  due  to  the 
higher  modes  for  a  purely  impulsive  loading, as a 
ratio of the  first mode component, is  equal  to or less 
than 

The  relative  error in bending  moment ran 
be  obtained by comparing  the  absolute  values o f  the 
sums of the  higher  terms in the  second derivatives of 
Eqs. V-4.4 and V-4.5 with the  first  term in the second 
derivative. One finds,  for  a  step  pulse of loading,  the 
result 

m 

% = 1 3 = 0.0518  (V-4.7") 1 

I1 = 3,5,7. .  

However,  for a purely  impulsive  loading  the  series 
given by this  elementary  theory, when there   is  no 
damping,  diverges  and  the  ratio  is  meaningless. 

From  Eqs. V-4.7 and V-4.7' it is apparent 
that  neglecting  all  modes  higher  than  the  fundamental 
modecauses an e r r o r  of less  than 0.5% in  deflection 
and less  than 5.2% in  bending moment if the  beam is 
subjected  to  a  step  pulse of infinite  duration. At the 
other  extreme of variation of loading with time, 
impulsive  loading,  the e r r o r  by neglecting  all but the 
fundamental mode in deflection is l ess  than 5% but the 

t,"O T IME,  t 

FIG. P-4.4 IMPULSIVE LOADING 

V-4.2.2 General  Procedures  for Defining 
Characteristics of Model Including 
Effects of Plastic  Action 

I n  general,  definition of a mathematical 
model which represents  the  essential  characteristics 
of a  specific  structural  element  requires  an  equality 
to  be  established  between  the  model  and  the  prototype 
of (1) the  external  work  done, (2) the  internal  work 
(or strain  energy),  and (3)  the  kinetic  energy. To ob- 
tain  these  equalities  requires  a knowledge of the mode 
shape.  Sometimes, as with the  example in the  pre- 
ceding  section,  this  will  be known; other  times it may 
have to  be  assumed.  From  these  equalities  are  de- 
fined  the  mass M, the  load P, and  the  stiffness K of 
the  simple  oscillator  (or SDF system)  in  terms of 
the  total  mass,  load,  and  stiffness of the  actual 
structure. 
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Again it is helpful  to  take a specific 
example  to  illustrate  the  procedure.  Consider  again 
the  simple  beam  loaded as shown in Fig. V-4.2. It i s  
desired  first  to  define  the  characteristics of a single- 
derree-of-freedom  model which behaves  similarly  to 
the  beam when it responds  elastically.  Second,  the 
same  structure  will  be  considered, but the  beam  will 
be allowed  to  respond with some  degree of plastic 

FIG. E-4.5 APPROXIMATE DEFLECTED SHAPE  FOR  BEAM 
DEFORMED PLASTICALLY 

behavior. 
Thus, it is readily  verified  that  the  dif- 

ferential  equation of motion  for  the  model  of  a  simple 
In the first case, it was shown the pre-  beam  subjected  to a uniformly  distributed  loading  for 

deformations in the  elastic  range  is ceding  section  that  the  deflected  shape  is  closely 
approximated by the  fundamental mode or: 

y z c Sill- 
. B X  

L (V-4.8) 
1 IT E1 2 4 

2L 
mL j i  + g y  = ;pL 

It is  to  be noted that  c is  a  function of time which de- or rearranging: 
fines  the  amplitude of the  deflection  at  the  center of 
the  beam. By equating  the  work done by the force p 
acting  over  the  entire  beam  (Fig. V-4.2)  to  the  work mj; + - 4 Y  = p  (V-4.9) 
done by the  concentrated  force P acting on the mass 4L 
of the  replacement  oscillator  (Fig. V-4.1) and by 
specifying  that  the  deflections of the two systems 
must be equal, one can  define  the  force which must  For  the  same  conditions but for only 
act on the  oscillator:  plastic  deformations,  the  differential  equation of 

7 li E1 5 

motion  for  the  model  is: 

P = -4pL 
li 2 .. 32EI 

5 + 3 = 
Similarly,  from  the  internal  work done (or  the  strain 
energy),  the  stiffness K is  defined by 

SL 

where 

(V-4.10) 

j ;  = the  acceleration  (second  derivative with 
respect  to  time) of the  mass  (or  the 
acceleration of the  beam  at  the  centerline). 

or  alternatively in te rms  of the  maxinlum moment M 
developing  at  the  center of the  beam 

p = the  amplitude of the  uniform loading at  any 
C instant of time 

2 

2L 
IT Mc u = -  

Finally  the  nlass M of the  model i s  defined  from  the 
kinetic  energy in each  system: 

M = - 11lL 1 
2 

When only plastic  deformation  occurs,  the 
deflected  shape  can be approximated by assuming  all 
curvature  is  restricted  to  a  short  length s at  the 

Taking  ratios of the  appropriate  coeffi- 
cients in Eqs. V-4.9 and V-4.10, one  finds 

" 
w 
w' - 0.91 

center of the  beam  (Fig.  V-4.5). In the  same  manner where M ,  K and ~ are the Illass, stiffness and circu- 
a s  in the  case  immediately  preceding,  the  character- lar llatural frequellcy respectively  for the 
istics of the  model a r e  defined  for  plastic  deforma- representing  the  beam  responding  elastically; M ' ,  K'  
tion in the  beam: and w'  have the  same  definition  for  the  model  reare- 

1 
2 P' = - pL senting the  beam  responding  plastically. 

It should  be noted that w =&and  that 
the  natural  period of vibration T = 3. &' 

M '  = - INL 
1 
3 
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Normally a structural  element  will  under- 
go  both elastic  and  plastic  deformation in resisting 
the  load;  therefore,  the  model  theoretically  must  be 
changed as the  deformation  progresses  from  a  system 
consistent with Eq. V-4.9 to a system  consistent  with 
Eq. V-4.10. However, it is apparent  from  the  ratios 
defined by Eq. V-4.11 that  l i t t le  error will  exist if the 
"elastic"  model  is not modified at  the  onset of plastic 
deformation. It is   true  that   these  ratios  are computed 
above  for only one  case, but the  values of the  ratios 
given are  comparable  to  those  for  the  structural 
systems  normally  encountered. Of course,  the  coef- 
ficients  for  the  mass,  stiffness  and  load  for  the  model 
representing a structural  element  other  than a simply 
supported  beam  usually a r e  different  from  those  given 
above.  Values of these  coefficients a r e  tabulated in 
Ref. V- 1.52. 

V-4.3 SELECTED METHODS FOR SOLVING THE 
DIFFERENTIAL EQUATION OF MOTION 

Numerous  texts  treat in detail  methods  for  solv- 
ing  the  differential  equation of motion  for a single- 
degree-of-freedom  system.  Here no effort  will  be 
made to give all of the  detailed  solutions  or  methods 
of solution;  instead  limiting  cases  particularly  useful 
in formulating  design  concepts  will  be  considered. 
Also  those  procedures which give  valuable  insight  into 
the  response  will  be  mentioned. In general,  presence 
of viscous  damping in the  system  will be ignored 
except,  particularly in shock  isolation  systems, when 
consideration of damping is  important. Although some 
damping  (both  viscous  and  Coulomb)  exists in a l l  
physical  systems,  it  generally is so small,  unless 
conscious  effort  is  made  to  increase  it,  that  insignif- 
icant e r r o r s   a r e  introduced in the  response  to  tran- 
sient  loads if it is neglected.  Yet,  one  must not 
ignore  the  presence of damping in drawing  conclusions 
about  the  total  response of a structure  since  damping 
will modify the  steady-state  response  significantly. 

The  limiting  cases  emphasized  in  the  following 
discussion  include: (1) the  response  to a step  pulse 
in  time with infinite  duration  and (2) the  response  to 
an  impulse. Many solutions of practical  importance 
a r e  bounded by the  response of systems  subjected  to 
these  loads.  Other  important  cases which a r e  not 
bounded generally by these  types of loading  include 
loads which have a finite  rise  time;  these  will be 
treated  separately in Section V-4.4.2. Finally,  the 
system  can  be  acted upon by motions of the  support, 
and  important  cases of this  type are   t reated in 
Section V-4.5. 

V-4.3.1 Direct  Solution of Differential  Equation 

In its  general  form,  the  differential  equa- 
tion of motion  for  the  single-degree-of-freedom 
system  (Fig. V-4.1) i s  (neglecting  Coulomb  damping) 

MC + g(b) + f (u)  = P(t) - M a  

where 

u =  

M =  

relative  displacement  between  centroid 
of mass  and  the  support with b and  the 
successive  derivatives  with  respect to 
time of this  relative  displacement. 

total  mass  supported by spring. 

g($ = a  function of the  relative  velocity  defined 
by  the  characteristics of the  dashpot  in 
the  system.  For a linear  dashpot g(b) = 
cb with  c  the  constant for the  dashpot. 

f (u)  = a function of the  relative  displacement 
defined by the  resistance  characteristics 
of the  spring in the  system.  For  an 
elastic  system f(u)  = Ku with K the  stiff- 
ness. 

P(t) = the  total  force,  as  a  function of time, 
acting on the  mass. 

2 = the  acceleration of the  support or 
"ground." 

For  the  base of the  oscillator  fixed,  the 
governing  equation  becomes,  for  no  damping  and  with 
y the  absolute  displacement of the  centroid of the 
mass: 

Mji + f(y) = P(t) (V-4.12) 

and  for  an  elastic  system: 

Mi + Ky = P(t) (V-4.12') 

Although solutions of Eq. V-4.12 a r e  
rather  easily  obtained,  there  are  other  methods,  to 
be  discussed  shortly, which are,   to many engineers, 
more  straightforward.  Thus, in this  section  the  dis- 
cussion  will  be  restricted  to  solutions of Eq. V-4.12'. 
It is  readily  shown  that  the  homogeneous  solution of 
Eq. V-4.12' is 

y = c c o s w t +  c s i n w t  1 2 

where 
c1 = a constant  defined by the  initial  value of 

c2 = a constant  defined by the  initial  value of 

the  displacement 

the  velocity 
t = t i m e  

The  particular  solution  for a step  pulse of force with 

infinite  duration is y = - = y  the  static  deflection P 
K 6' 

caused by the  load P. Combining  the two solutions 
one  obtains 

y = y, (1 - cos p) (V-4.13) 
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when initial  displacement  and  velocity a r e  both zero. 
When an  impulse  is  applied,  the  mass  attains  an 
initial  velocity  defined by equating  the  impulse  and 
momentum.  Thus for this  case 

2n P t l  . 2nt y = -  
TK 'ln" T 

where  Pt  equals  the  impulse,  i. 

(V-4.14) 

1 

V-4.3.2 The  Phase-Plane  Diagram or Gyrogram 

Taking  the  first  derivative with respect  to 

time of Eq. V-4.13 and  multiplying  both  sides by -, 
one  obtains, 

T 
2s 

Tjl = y sin- 2at 
277 s T (V-4.15) 

Equations V-4.13 and V-4.15 represent  the  parametric 
equations of a  circle with radiys y in rectilinear 

coordinates, y '  (=y, - y) and 5. The  circle  has  its 

center  at  y = y  and a t 2  = 0. This  coordinate T '  
2n 

system  defines what is   generally  referred  to  as  the 
phase  plane  and  the  diagram  formed of connected 
circular  arcs,  developed as   descr ibed below, i s  fre- 
quently  referred  to  as a gyrogram.  The  general 
interpretation  apparently  was  given  first  in  Ref. V-4.2, 
and  it i s  extended in Ref. V-4.3. The  gyrogram 
represented by Eq. V-4.13 is a  circle as shown in 
Fig. V-4.6(a), and  the  actual  solution in a  more 
familiar  coordinate  system  constructed  directly  from 
the  gyrogram is shown in Fig. V-4.6(b). It  should  be 
obvious  that  real  time  is  represented by angles  meas- 
ured  to any radius  counterclockwise  from  the  positive 
y'-axis.  The  angle  has  a  value in radians which is   se t  

equal  to -or to wt, an  identical  quantity. 

S 

2n  

2st 
T 

If it is now recognized  that  Eqs. V-4.13 
and V-4.15 represent  solutions  for a step  pulse with 
any  duration,  it  follows  that  the  gyrogram  can  be 
used  to  construct  approximately  the  response of a 
system  to  any  forcing  function.  To  accomplish  this 
approximate  solution  the  forcing  function  is  divided 
into a ser ies  of steps in which each  step  averages  the 
area  under  the  curve  representing  the  actual  force 
(Fig. V-4.7). Of course,  the  proper  values of displace- 
ment  and  velocity  must  be  used  to  begin  each new 
step  used  to  approximate  the  curve.  Herein  lies  the 
significant  advantage in the  use of the  gyrogram: 
(1) Each  step  (i)  has  a  finite  amplitude which defines 

the  value ysi (= 3) which,  in turn, is the  radius 

of the  circle  for  this  step;  and (2) each  step  has a 
finite  duration  ti which defines  the  central  angle of 
the  arc  through which the  circle of radius  ysi is to  be 
drawn.  The  initial  displacement  and  velocity of the 
system  are  normally  zero;  however,  other  values of 
initial  velocity  can  be  plotted on the  phase-plane 
coordinates.  From  this  initial point the  radius yso 

I 
I 
I 

I +""""- c 

! 
I 
I 

(a) Gyrogram. 
(b) Displacement-  Time  Diagram. 

FIG. P-4.6 GYROGRAM CONSTRUCTION FOR STEP  PULSE ACTING 
ON SIMPLE ELASTIC OSCILLATOR 

is laid off so that  the  center of the  circle  falls on the 
y'-axis.  Then a circle is drawn  through  the point 
corresponding  to  the  initial  values of displacement  and 
velocity  until  an a r c  subtending  a  central  angle  equal  to 
o a t o  (in  radians)  is  formed.  The  terminus of this   arc  
defines  the  initial  values of displacement  and  velocity 
for  the next step  used  to  approximate  the  actual  forc- 
ing  function,  and  the  steps  just  outlined are  repeated. 
This  process is continued  until  the  entire  forcing 
function  has  been  approximated. 

The  discussion so far has  been  restricted 
to  a consideration of elastic  response. When the 
resistance  function  for  the  system  is  monotonically 
increasing with a concave downward curvature,  the 
gyrogram  also is a useful  tool  for  describing  approxi- 
mate  response.  The  procedure  to  be  followed  is  very 
similar  to  that  just  described:  Since ys i s  by defini- 

tion -, successive  reductions  in K representing a P 
K 



plecenyise-linear  approximation  to  the  resistance 
lutlctioll (Fig. V-4.8) have  the  same  effect as   success-  
ively larger  steps in an  approximation of a forcing 
fullction. However, it must be noted that  all  displace- 
nients  from  the  gyrogram  associated with values of 
K which do not pass  through  the  origin of the  resist-  
ance  diagram  are  larger than  they  should  be by an 
amount  defined by the  intercept,  such as yc  in Fig. 
V-4.8, on the  displacement  axis of the  particular 
straight-line  portion  considered. 

The  gyrogram  can  be  used  for  solutions 
involving  resistance  functions  other  than  that  pictured 
in  Fig. V-4.8, but they become  quite  complex  and 
other  methods  are  simpler  to  apply.  For  example, 
the  parametric  equations  define  parabolas  and  equi- 
lateral  hyperbolas  for  the  gyrogram  representing  a 
resistance  function which is  ideally  plastic  and un- 
stable,  respectively. 

Series Of Steps 
Approxlmating  Loading 

Actual  Loading 

FIG. P-4.7 METHOD FOR APPROXIMATING  LOADING FUNCTION 
FOR SOLUTION BY GYROGRAM 

a 
w 
0 z 

/ 
I 

Actual  Resistance, 

Fiecewise Linear Approx- 
imation To Actual 

/ 

V-4.3.3 Another  Useful  Graphical Method 

When the  gyrogram  solution  becomes 
quite  cotnplex  another  graphical  method  can  be  used. 
If the  governing  differential  equation  (Eq. V-4.12) is 
rewritten in the  form 

It is  apparent  that  the  true  acceleration of the  mass   is  
defined by the  algebraic  difference  between  the  accel- 
eration  caused by the  applied  force  and  the  accelera- 
tion  resulting  from  the  resistance  developed.  For 
elastic  systems,  this  observation  is not particularly 
helpful  since  generally  the  dependence of y on time is 
unknown. However, if the  resistance  function f(y)  for 
the  element is elasto-plastic  (Fig. V-4.9),  a  rapid 
approximate  solution for the  response  can be con- 
structed  graphically.  Consider  the  conditions shown 
in Fig. V-4.10 wherein an arbitrary  curve  for 
$)is drawn on the  same  coordinate  system a s  the 

curve -for the  resistance  function f (y)  shown in 

Fig. V-4.9.  Means  will  he  developed  later  for  deter- 
mining  approximately  the  time  tV  at which yielding 
begins. If the  initial  values of vGlocity and  displace- 
ment of the  system  are  zero,  the  maximum  displace- 
ment occurs  at  time  tM  where  the  cross-hatched  area 
labeled 2 equals  the  cross-hatched  area  labeled 1 in 
Fig. V-4.10. The  magnitude of the  maximum  displace- 
ment, which normally  is  the  quantity  desired,  is  then 
found by taking  first  moments of the  areas  labeled 1 
and 2 in Fig. V-4.10 using  time tM a s  the  center of 
moments.  Since, by definition,  the two a reas   a r e  
equal,  this  moment  is  equal  to  the  couple  defined by 
the  product of the area  under one portion  (either 1 or  
2) and  the  distance  between  the  centroids of the two 
areas .  In structural  engineering  this  technique  is 
directly  analogous  to  finding  the  maximum bending 
moment in a  beam on which the  entire  loading  consists 
of the net acceleration in the  system. 

f ( Y )  
M 

RESISTANCE 
Actua l  

Actual 

D 

7 

DEFLECTION, y 
U 

YY 
FIG. p-4.8 METHOD OF APPROXIMATING RESISTANCE 

FOR SOLUTION BY GYROGRAM FIG. Y-4.9 RESISTANCE-DISPLACEMENT RELATIONWIP 
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FIG. p-4.10 GRAPHICAL  SOLUTION FOR RESPONSE OF SYSTEM 
WITH ELASTO-PLASTIC RESISTANCE 

Now consider  the  problem of finding  t 
The  deflection  at  yielding  y  is  numerically  equal  to Y' 
the  moment (about t ) of th8net  area  to  the  left of ty 
in Fig. V-4.10. Sint?e only an  approximate  value is 
generally  required,  the  area may be  neglected  under 
the  resistance  curve up to ty., Thus if P i s  the 
"effective"  average  force  acting on the  structure 
during  the  time  to  ty, 

- 2  
P t  

Yy Y 

But R = Ky and - = ~ ; therefore K 4n2 
Y Y M T 2  

A&= 0.226& (V-4.16) 

and if P n,ax and P a r e  the forces  acting  at  time  zero 
and  at  the  time  yiehing  occurs  respectively 

- 2 Pmax + P 
P r  

3 (V-4.17) 

The  interdependence  between  ty  and P precludes  a 
direct  solution  for  ty.  Usually,  however,  it is suffi- 
cient  to  take P= Pmax. The  approximations  used in 
the  above  derivation a r e  justified by observing  that 
the  length of the  moment arm  for  the  couple  defining 
the  maximum  displacement is  relatively  insensitive 
to  changes in ty. 

V-4.3.4 Numerical  Integration 

of application  to  structures as complicated a s  one 
wishes  to  consider, with any relationship  between  force 
and  displacement  ranging  from  linear  elastic  behavior 
through  various  degrees of inelastic  behavior  or  plastic 
response, up to  failure  (Refs. V-4.4,  4.5,  4.6 and  1.52). 
Any type of loading or  motion can  be  considered  such 
as that  due  to  blast,  impact  from a moving object,  or 
foundation  motion due  to an earthquake. 

There  are  many methods of numerical  in- 
tegration of differential  equations. Among those 
described,  for  example, in Chapter 8 of Ref. V-1.52 
a r e  the  Taylor  Series Method, Milne's  Methods,  and 
the Method of Runge and  Kutta. An alternative  method 
is described  here  that  has  certain  advantages in dy- 
namics  problems,  and  in  particular  avoids  certain 
difficulties in starting  the  procedure,  or in checking 
the  steps involved in the  calculation,  The method is 
described in  Ref. V-4.4. It  can  be  used in the  same 
way for both  hand calculation  or with a high-speed 
digital  computer.  The  discussion  here  is  related  to 
a  single-degree-of-freedom  system;  however,  the 
method is  readily  applicable  to  more  complicated 
systems. 

Consider  the  structure shown in Fig. V- 
4.11, which consists of a weightless but deformable 
element  supporting  lumped  masses.  Each  mass  is 
acted upon by an  external  force,  and  the  structure 
as a whole  may be  subjected  to  prescribed  motion of 
the  foundation  or  there  may  even  be a prescribed 
motion of some  particular  point on the  structure.  The 
complete  structure, shown in Fig.  V-4.11(a), i s  
separated  into two parts: in Fig. V-4.11(b), the 
structure  is  isolated as a free body with resisting 
forces  R  acting on it which represent  the  reactions 
from  the  masses on the  structural  framework  itself; 
in Fig. V-4.11(c) the  masses  are  isolated with the 

(a) Structure  With  Lumped Masses. 
(b) Structure,  With Masses  Removed, 

Acted on by Resisting  Forces,  R. 
(c)  Masses  Acted on by External 

Loads  and  Structural  Resistances. 
Numerical  methods of integration of the 

response of structures  to  dynamic  loading a r e  capable FIG. P-4.11 STRUCTURE ANALYZED 



external  loads  acting on them,  and with the  structural 
resistance R opposing  the  action of the  external 
loading P. The  positive  directions of P and R a r e  
the  same on the  structure,  and  these  directions, which 
may  be  defined  arbitrarily,  are  taken  also as the 
positive  directions  for  displacement  y,  velocity j :  and 
acceleration 7. In the  general  case  the  mass  may  also 
be  acted on by a damping  force which is generally a 
function of the  velocity of the  mass, but it  may  be  any 
function  whatsoever.  This  can  in  general  be  consid- 
ered as an  additional  external  force which, however, 
is not known in advance.  The  structural  resistance 
R is defined as that  system of forces  which corre-  
sponds  at  any  time  to  the  displacement of the  structure 
a t  that  time. 

The  sign  convention  and  notation a r e  
chosen so as  to  make it apparent  that  the  masses M 
modify or  filter  the  forces P and  transmit  them  to 
the  structure in modified  form as R .  If the  force P 
is applied  very  slowly,  there is very  little  or no 
acceleration,  and R = P. If the  forces  are  applied 
quickly,  the  acceleration  removes  much of the  force 
or  changes  it.  Under  these  conditions, R is  different 
from P. The  structure,  however,  responds only to 
the  forces R. It  has  static  deflections which a r e  just 
those  generated by the  forces R, and  the  stresses 
within the  structure  can  be  computed  from  these  forces. 
Therefore,  the  structure  can  be  analyzed  statically, 
once we have  determined  the  "modified"  forces R. 
The  forces P may  become  zero  after a short  time, 
but in general  the  system  will  still  continue  to  deflect. 
The  relationships which determine  the  motion  remain 
unchanged.  The  maximum  deflection  and  the  maximum 
values of R, or  those which correspond  to  the  maximum 
s t resses  in the  structure,  may  occur  at  a  time  at which 
the  forces P are   zero.  

Let us  consider  one of the  masses M(k), 
at  a  time  tn.  Since we a r e  dealing  with  the  particular 
mass  and  the  forces  acting on it, we can  drop  the 
superscript  designation  for  this  mass  in  the  equations 
which follow. We assume  that we know the  acceleration, 
velocity,  and  displacement of the  mass  at  the  time  tn. 
We wish  to  find  these  quantities  at  the  time  tn + 1 
which differs  from  tn by the  time  interval h. The 
subscripts n and  n + 1 indicate  the  values  at  either 
tn  or  tn + 1, respectively,  for  the  quantities jr, $and  y. 

In general,  for  any  time,  the  acceleration, 
a s  in the  preceding  section but replacing f(y)  by R 
and  P(t) by P, is  given by the  relation: 

j ;  = (P - R)/M  (V-4.18) 

Let us define  the  displacement  and  the 
velocity  at  the  end of the  time  interval by the following 
equations: 

(V-4.19) 

90 

For y = -, this  becomes: 1 
2 

In these  equations,  the  parameters p and 
y are  those which can  take on assigned  values (as 
discussed  later) so as to  lead  to  the  type of result 
which we desire.  It  can  be  seen  that  Eqs. V-4.19 to 
V-4.21 give  correct  results  for  displacement  and 
velocity when the  acceleration  does not vary  during 
the  time  interval.  The  values of the  parameters  will 
be  chosen so as to  give  the  best  representation  under 
conditions when the  accelerations within the  time 
interval do vary. 

The  numerical  procedure  is  used in the 
following way: For  each of the  masses  an  assumption 
is made of the  value of Tn + 1 . This  can  be  taken as 
the  same as Tn, or  from  a  plot of successive  values, 
an  estimate  can  be  extrapolated. By the  application of 
Eq. V-4.19 to  each  mass in turn,  the  displacement  at 
the  end of the  interval  is  computed.  This  gives a 
first  estimate  for  the  configuration of the  structure  at 
the end of the  interval.  Then  the  forces R(k) a r e  
computed,  corresponding  to  this  configuratlon. With 
the known values of P(k) , the  estimated  values of R, 
and  with  the  aid of E;.+b-4.18, derived  values of Pn+ 1 
a r e  obtained.  These a r e  in  general  different  from 
the  assumed  values.  The  calculation is therefore 
repeated  until  a  close enough agreement is obtained 
between  the  assumed  and  derived  values. At this 
point  the  calculation  for  the  time  interval i s  completed, 
and one can  proceed with the next time  interval. 

n t  1 

Unless  the  calculations  converge  quickly, 
the  method is tedious.  Usually,  fairly  rapid  conver- 
gence is required  to  insure  accuracy  also, as will  be 
demonstrated  in  the  following  sections. 

Convergence  and  Stability of Numerical 
Procedure.  Consider a svstem of one  degree of ., 
freedom  or a more  complex  system  loaded  in  such a 
way that  its  motion is in  the  shape of one of the  modes 
of vibration of the  system. It will  suffice  to  consider 
the  former  simplification,  in which case  the  quantity 
R can  be  stated in te rms  of the  spring  constant K 
times  the  displacement x, for  linear  elastic  behavior. 
For  such  a  system,  the  circular  frequency of vibration 
w is given by: 

n 

w' = K/M 

It is apparent  from  Eqs. V-4.18 and V- 
4.19 that if the  assumed  acceleration is in  error,  the 
derived  acceleration  will  generally  also  be in e r ror .  
The  true  value of the  acceleration  is  that which leads 
to  the  same  value of acceleration  from  Eq. V-4.18 



that  one  assumes  in  starting  the  calculation with 
Eq. V-4.19. With this  observation, one can  derive 
the  result: 

e r r o r  in  derived  acceleration - 
e r r o r  in  assumed  acceleration- sa = -p u2 h2= 

(V-4.22) 

The  rate of convergence of the  calculations is meas- 
ured by the  quantity Sa which is seen,  therefore,  to  be 
a function of the  square of the  time  interval.  It is 
also  apparent  that  the  sequence of errors   osci l la tes ,  
Each  error  is  opposite  in  sign  to  the  preceding one. 

It is clear  that  the  formal  numerical 
process  of solution  will  converge only if the  quantity 
Sa is numerically less than  one.  The  critical  value of 
time  interval  for which the  numerical  process  formally 
converges  can  easily  be  determined  from  Eq. V-4.22. 

For  practical  purposes  the  time  interval 
would ordinarily  be  taken  to  be  somewhat  smaller 
than  that which corresponds  to  pure  oscillation 
(or Sa = - l), to  insure  rapid enough convergence  for 
practical  purposes. If Sa = - 0.32, the e r r o r s  will  be 
reduced  to 1% of their  original  value  in  four  steps or 
four  cycles of calculation. Of course,  it  can  be  seen 
that  the  convergence is more  rapid  the  smaller  the 
value of p.  For p = 0, the  ratio Sa is  always  zero. 
This would appear  then  to  be  the  best  value of p. 
However,  other  considerations  affect  the  choice of p ,  
and  these  are  considered  later. 

Let us consider  further  the  special  case 
of a  simple  system  such as that  previously  considered, 
but with  the  additional  simplification  that  the  external 
force P is zero.  For  such a condition,  the  motion of 
the  system  should  be a pure  oscillation. We can  study 
easily what the  results  are  from  the  relationships 
given by Eqs. V-4.19 and V-4.20 to  determine  whether 
our  procedures  can  be  made  sufficiently  precise. 
With the  assumptions  described, Eq. V-4.18 reduces 
to  the following 

f = w2y (V-4.23) 

If one  expresses  yn  in  terms of yn - 1, $, - 1, yn - 1 
and jfn, by use of Eq. V-4.19 for  the  preceding  interval, 
and if one  expresses  yn  in  terms of jln - 1 and  the 
corresponding  accelerations  from Eq. V-4.20 for  the 
preceding  interval,  one  can  derive by use of Eqs. 
V-4.19,  V-4.20 and V-4.23 the following difference 
equation  in te rms  only of the  displacements  at  three 
successive  time  intervals: 

For  y = -, this  equation  can  be  rewritten as: 1 
2 

In  these  equations, a2 represents  the  expression: 

Equations V-4.24 and V-4.25 are  difference 
equations  for which the exact solutions  can  be  obtained. 
However,  it is unnecessary  to  write  the  exact  solution 
to  study  the  effect of y on the  result. It is immediately 
apparent  that if y is different  from 1/2, the  difference 
equation  corresponds  to  the  motion of a system with 
damping,  even though our assumed  system had no 
damping.  Furthermore, if y i s  less than 1/2,  the 
damping is negative.  This  means  that  the  system  can 
build up self-excited  vibrations if it   starts  to  vibrate 
at all. 

It is of interest  to  observe  that if both 0 
and y are taken as zero, Eqs. V-4.19 and V-4.20 re- 
duce  to  the  very  simple  and  commonly  used  form 
that corresponds  to a numerical  integration  process 
which  assumes  that  the  acceleration  in  each  step  re- 
mains  the  same as its value at the  beginning of the 
interval. It turns  out  from Eq. V-4.24 that  such a 
procedure  leads  to a spurious  oscillatory  response 
with  constantly  increasing  amplitude,  which arises 
from  the fact that negative  damping is introduced by 
this  type of procedure,  It  follows,  therefore, that this 
simple  process is not a desirable one. Furthermore, 
the best  value of y in Eq. V-4.20 is 1/2 although  there 
may  be a reason  for  taking y greater  than 1/2 since 
this  introduces a real  and  positive  damping  in  the re- 
sults. Under these  conditions  one  may be able  to 
damp out undesirable  higher  mode  response. How- 
ever,  this  introduces  other  complications  and is not 
in  general a convenient or  promising  procedure. 
Consequently,  it  appears  best  to  take y always as 1/2. 

When Y = 1 2, the  solution of Eq. V-4.25 
is a periodic  one  for c i  less  than 4. Under these con- 
ditions,  the  solution  can  be  expressed  in  the  following 
form: 

For CY < 4, let cy = 2 sin b/2, 2 (V-4.27) 

then 

y = A cos J/ t/h + B sin IL t/h (V-4.28) 

Equation V-4.28 indicates  that  the  displacement is 
periodic  with a period  Ts  given by 

Ts = 2nh/+ (V-4.29) 
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The pseudo-period Ts can be stated  in  terms of the 
true  period  T by the  relation 

T ~ / T  = e/+ (V-4.30) 

It appears  that  the  relationship  between  the  pseudo- 
period  and  the real period  depends on  the  time  inter- 
val, which  in turn  is  a  function both of 4 and p a s  
indicated by 

2 0  2 

1 - go 
ij =- 

2 (V-4.31) 

For cy greater  than 4,  Eq. V-4.25 will not 
have a periodic  solution.  Actually  under  these  condi- 
tions  the  solution  will  be  a  divergent  oscillatory one. 
Consequently, d = 4 is  the  limiting  condition  for 
"Stability" of the  solution.  The  limiting  value of 0 
can  be  obtained  from Eq. V-4.31. It can  be  seen by 
comparison  with Eqs. V-4.22 and V-4.31 that  for 
values of B less  than 1/8 the  limiting  value of time 
interval  for  stability  is  smaller  than  that  for  conver- 
gence. However, for  values of P greater  than  1/8,  the 
reverse  is   true.  Consequently, when /3 is less  than 
1/8, the results of the  calculations  may  be  unstable, 
and  the  instability  may not be  immediately  apparent. 
However, when f l  is greater  than 1/8, the  sequence 
of calculations  will  diverge  before  the  instability 
occurs,  and the inadequacy of the  procedure,  or  the 
excessive  length of the  time  interval,  will  be  immedi- 
ately  apparent. 

2 

E r r o r s  in  Amplitude  and  Period  from 
Numerical  Calculation.  For  the  simplified  conditions 
considered  in  the  previous  sections,  the  exact  solution 
for  the  problem,  given by y, and  the  approximate  solu- 
tion, J, a r e  shown  in Eqs. V-4.32 and V-4.33: 

y = yo cos  2nt/T + w sin  2nt/T (V-4.32) 

y = y cos 2*t/Ts + B sin  2xt/Ts (V-4.33) 

YO 

- 
0 

It should  be  recognized, of course,  that  the  approxi- 
mate  solution, Eq. V-4.33, i s  defined only at  specific 
times,  The  maximum  values  may not occur  at  the 
t imes  a t  which the  calculations  are  made. 

It is  apparent  from  a  comparison of the 
last two equations  that  the  approximate  solution  is 
similar in form  to  the  exact  solution but differs  in 
the  periodicity.  The  approximate  period is measured 
by the  quantity Ts which is  different  from  T  in  gen- 
eral.  However,  the  maximum  displacement  that  cor- 
responds  to a given  value of initial  displacement is 
identical  in  these two equations. In other  words,  there 
i s  no e r r o r  in  maximum  response  corresponding  to  an 
initial  displacement.  There  is,  however, an e r r o r  in 
the  response  corresponding  to  an  initial  velocity.  This 
i s  indicated by: 

(V-4.34) 

It  will  be noted that if /3 = 1/4, then  there 
is no e r r o r  i n  maximum  response  due  to  an  initial 
velocity. 

The  relation  given  in Eq.  V-4.30 can  be 
expressed  more  conveniently by the following approxi- 
mate  formula  for  the  ratio of the  pseudo-period  to  the 
actual  period of vibration: 

T /T s 1 - (1 - 12p) e /24 - (17 - 12op+72op ) e  / m o  - ... 2 2 4  

(V-4.35) 

Here  it is apparent  that  the  error in period  varies as 
the  square of the  time  interval.  However,  for = 1/12, 
the  term  involving  the  square of the  time  interval  van- 
ishes  and  the  error  in  period  varies as the  fourth 
power of the  time  interval.  Consequently,  the  error  in 
pseudo-period of the  response is considerably  smaller 
when P = 1/12 than  it i s   for  any  other  value of p. 

For  convenience,  the  magnitude of Sa 
which measures  the  rate of convergence is summarized 
in Table  V-4.l(a)  and  the e r r o r s  in velocity  response 
and  in  period are  summarized  in  Tables  V-4.l(b)  and 
V-4.l(c), for  a number of values of /3 ranging  from  zero 
to  1/4,  for  several  values of time  interval  h  ranging 
from 0.05 T  to  the  limiting  values  for  stability  or 
convergence. 

To  complete  the  presentation,  there is 
given  in  Table V-4.2 a summary of the  time  intervals 
for  stability  and  for  convergence  for  the  different 
values of p. 

It  can be seen  from  Tables V-4.1 and 
V-4.2 that  divergence is obtained  before  the  limit of 
stability is reached, when i s   g rea te r  than 1/8, and 
that  the  solution  becomes  unstable  while  the  numeri- 
cal  solution is still  convergent when p is less  than 
1/8.  The  fact  that  the  response  due  to  initial  dis- 
placement is exact  for  all  values of p ,  within  the 
range of stability,  means  that  numerical  errors  that 
inevitably creep  into  the  calculations  will not cause 
the  computed  results  to  increase without limit. How- 
ever,  above  the  range of stability  this  observation no 
longer  applies  and  the  response  even  to  initial  dis- 
placement  becomes  excessively  large. 

The  response to initial  velocity  is  always 
greater  than  it  should be, and  becomes  infinitely 
large,  also,  at  the  limit of stability. Below this  range 
of stability,  the  errors  that  occur  in  the  calculations 
have the  effect of magnifying  the  response. However, 
these  errors  are  relatively  small   for  values of h/T 
less  than 0.2 and are  very  small   for h/T less  than 0.1. 

It is interesting  to  note  to what type of 
variation of acceleration  during  the  time  interval 
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TABLE 4.1 EFFECTS  OF LENGTH OF INTEKVAL ON EIiRORS DUE TO KUMERICAL PROCEDURE 

Values of p 

h,/T 0 1 12 1 ,“8 1 /e 1 /4 

0.05 
0.10 
0.20 
0.25 

0.3 18 0 
0.389 
0.450 L 

( a )  Rate of Convergence 

0.008 0.012 0.016  0.025 
0.033 0.049 0.066  0.099 
0.132 0.197 0.263  0.395 
0.206 0.308 0.411  0.617 

0.333 0.500 0.667  1.000 
0.500 0.750 1.000  1.500 

1.000 1.333  2.000 

( b )  Relative  Errors in  Maximum  Response to an  Initial  Velocity 

0.05 0.012 0.008 0.006 0.004 
0.10 0.052 0.034 0.025 0.017 
0.20 0.209 0.166 0.116 0.073 
0.25 0.614 0.306 0.202 0.122 

0.318 inf. 0.732  0.414  0.225 
0.389 inf. 1.000  0.414 
0.450 inf. 0.732 

0.05 
0.10 
0.20 
0.25 

0.318 
0.389 
0.450 

( c )  Relative Errors in  Period 

- 0.004 -0.0001 0.002 0.004  0.008 
-0.017 -0.0003 0.008 0.017  0.033 
-0.07G -0.006 0.028 0.059 0.121 
-0.130 -0.015 0.03 8 0.087  0.179 

-0.363 -0.045 0.047 0.129  0.273 
* -0.220 0.035 0.170 0.382 
* * -0.100 0.195  0.480 

~~~ 

-Values indicated are beyond limit  for  stability. 

TABLE: 4 . 2  STABILITY AND CONVERGENCE LIMITS 

p = 0  p = 1/12 p = 1/8 p = 1/6 0 = 1/4 

Stability  Limit, h/’T 0.3  18  0.389 0.450  0.551 id. 

Convergence  Limit, h/T inf, 0.551 0.450  0.389  0.318 
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some of the  different  values of /3 correspond. If Eqs. 
V-4.19 and V-4.21 a r e  considered,  the  type of varia- 
tion of acceleration  during  the  time  interval  that  cor- 
responds  to  the  values of 0 = 1/4,  1/8, and 1/6, i s  
shown respectively in Fig. V-4.12. For @ = 1/4 the 
acceleration  during  the  time  interval is constant  and 
has a value which is  the  average of the  values  at  the 
beginning and  the  end of the  interval.  For /3 = 1/8, 
the  acceleration  has a constant  value  equal  to  the 
initial  value  for  the  first half of the  time  interval  and 
a constant  value  equal  to  the  final  value  for  the  second 
half of the  time  interval.  However,  for 0 = 1/6, the 
acceleration  varies  linearly  during the time  interval 
from  the  initial  to  the  final value. 

Since  the  effect of the  external  loading  can 
be  taken  into  account  in  the same way, it  appears  that 
if the  external  loading  varies  linearly  during  the  time 
interval,  the  value of 0 = 1/6 should  give  the  best re- 
sults.  However,  this i s  not entirely  true if the  linear 
relationship  changes  from  one  interval  to  the  next, 
Nevertheless,  because  the  various  errors  appear  to  be 
more  nearly  balanced,  and  because of the  convenience 
in  dealing  with  external  loadings  which  vary  linearly 
or  nearly  linearly,  it  is  recommended  that  for  prac- 
tical  purposes  the  value of p = 1/6 be  used. It is also 
clear  that  this  choice  gives a large  value of Sa in  com- 
parison  with  the  limit of stability,  and  therefore a 
convergent  sequence of calculations will always  insure 
stability  for  this  choice of p. 

Choice of for  Practical Use of Numerical 
Method. In addition  to  the  considerations  just  outlined, 
there is another  reason  for  using  a  value of p different 
from  zero  for  practical  calculations. In any  set of cal- 
culations  it is desirable  to  have a self-checking  pro- 
cedure. If p i s  taken as zero, no check is possible  ex- 
cept  one which involves  some  other  criterion  to  check 
the  results,  since  the  calculation  does not require 
repetition  in  each  time  interval. However, where a 
convergent  system of calculations is developed,  then 
during  the  process of converging  to  an  answer  the  cal- 

i 
0 
k a a 
W 
-I 
W 
0 
0 a 

culations a r e  inevitably  repeated,  and  repeated with 
slightly  different  values of the  numbers involved. A 
close  agreement  between  the  results of successive 
calculations is in general a sufficient  check on the 
accuracy of the  numerical work. With a value of 

= 1/6, a time  interval of the  order of 1/5 to 1/6 the 
shortest  natural  period of vibration of the  structure 
will  give a high  enough rate  of convergence  for  prac- 
tical  purposes  and  will  also  give  errors  small enough 
to  be  tolerable. It should be noted that  the  natural 
periods  generally  become  longer as inelastic  action 
develops.  For  purely  plastic  resistance,  the  period 
is infinitely long. Therefore  the  time  interval  can  be- 
come  longer as plastic  action  develops  in  the  structure. 

With the  errors  in  the  results and  also 
with  the  criteria of convergence  and  stability,  it i s  
necessary at this point to  indicate  the  results  for  sys- 
tems with more  than  one  degree of freedom.  It is 
clear  that  the  general  relationships which described 
above  apply  independently  to  each of the  modes of 
vibration of the  structure.  Consequently,  the  most 
critical  conditions  are  generally found in  the  highest 
mode of vibration o r  in the  mode which has  the  short- 
es t  period. Both the  stability  and  the  convergence a r e  
affected  primarily by this mode. All the  other  modes 
are more  stable,  converge  more  rapidly,  and  introduce 
smal le r   e r rors  in the  results. 

I t   i s  not necessary  that  the  individual 
modes  be  separated  and  computed  in  the  calculations. 
The  results  are  determined by the  numerical  procedure, 
applied without consideration of the  individual  modes, 
and  the  numerical  results  obtained  in  the  calculations 
will  be a combination of those which pertain  to  the 
individual  modes.  However,  the  stability of the  re- 
sults  and  the  convergence is determined by the  com- 
ponent of the  highest  mode  in  the  structural  response. 
Because of the  effect of the  stability  limitations,  and 
also  because of convergence  difficulties,  it is   neces- 
sary to take a time  interval  somewhat  less  than  the 
maximum  for  stability  or  convergence. If the  con- 
vergence  difficulty  can  be  overcome,  any  time  interval, 
however long, can be taken  for 0 = 1/4. 

In many  cases,  although  the  higher  modes 
exist  in  the  problem,  the  proportion of the  highest 
mode in the  response of the  structure is relatively 
small.  Consequently, a much  greater  error is per- 
missible  in the calculation  for  the  higher  modes  than 
for  the  lower  modes.  This  means  that  in  general  the 
e r r o r s  in  the  total  response of the  structure  will  be 
considerably  less  than  those  indicated  in  Tables 
V-4.l(a),  (b), and (c) when a system  with  several 
modes is considered. However, this  does not mean 
that  the  criteria  for  length of time  interval  can  be 
disrerrarded  since a value of time  interval  greater 
than the limit  for  stability  will  introduce  eventually 
e r r o r s  which approach  infinite  values  in  the  structur- 

L a1  response.  The only simple way of avoiding e r r o r s  
of this  sort  is to  introduce  artifical  damping  in  the 
procedure to avoid  the  instability.  This  can  be  done 

FIG. P-4.12 CONSISTENT  VARIATIONS OF ACCELERATION WITH by a choice Of 
different from 1/2 in Eq* v-4'207 but 

j3 IN A TIME INTERVAL it  does not appear  to  be  practicable  to  use a value 
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different  from 1/2, because  such a choice  introduces 
other  errors.  It is probably  more  convenient  to re- 
duce  the  number of masses  and  thereby  reduce  the 
shortest  period  considered. 

In structures which change  their  flexibility 
with  deformation,  it is clear  that  the  frequency  or 
period of the  highest  mode  changes as the  flexibility 
changes.  It is that  frequency which corresponds  to  the 
particular  condition of the  structure which is impor- 
tant  in  any  state of the  calculation.  Since  it i s  incon- 
venient  to  compute  the  shortest  period of the  structure 
in a structure in  which this  value is constantly  chang- 
ing, it i s  probably  sufficiently  accurate  and  in  most 
cases  convenient  to  use as a criterion  for  value of the 
time  interval  the  rate of convergence of the  results. 
This  can  be  done in the following  way: 

With a given  choice of P ,  say = 1/6, the 
calculation is carr ied out  until  convergence  in  the as- 
sumed  and  derived  accelerations is reached  in  three 
to  four  steps. If this  convergence,  say  to  the  order of 
about 1% or   l ess ,  is not  reached  in  four  steps,  the 
time  interval is reduced by a factor of 2, and  the cal- 
culation is  repeated.  This  process is carr ied on until 
a time  interval is found  which gives  rapid enough  con- 
vergence.  The  time  interval so obtained is used  until 
convergence  is  obtained  in  one or two intervals. When 
this  condition is obtained,  the  time  interval is doubled 
for  the  next  step. With this  procedure of changing  the 
time  interval  in  accordance with the rate  of conver- 
gence,  one is assured  that  the  time  interval is suffi- 
ciently long to  give a reasonable  rapidity. A similar 
criterion  can  be  established with more  rapid  and  more 
accurate  computing  equipment. 

Solutions by High-speed Digital  Computer. 
The  results of a great many solutions  obtained  either 
by exact integration of the  equations of motion, or  by 
numerical  methods, are summarized in detail in Ref. 
V-1.37 and Fig. V-1.31. Also the  problem of rebound 
of a structural  element  was  studied by use of computer 
solutions.  The  results of this  study (Ref. V-1.17) 
are presented  in Fig. V-1.32 and  in  Table V-1.2. 
Table V- 1.2 indicates  that  rebound  can  be  significantly 
modified by the  presence of relatively  little damping. 
Values of tm  in Fig. V-1.32 a r e  obtained  directly  from 
Fig. V-  1.31. 

Figure V-1.31 presents  results  for only 
one  type of idealized  resistance  and  one  type of ideal- 
ized loading. Computer  solutions  were also obtained 
for  other  loading  and  resistance  functions. However, 
the  approximations  developed in the  following  sec- 
tions  present  the  results of these  studies  with  suffi- 
cient  accuracy  to  make it unnecessary to discuss  the 
"exact"  results. 

Approximation  for  Complex  Loading 
Curves.  For  more  complex  loading  curves,  it is pos- 
sible  to  use Fig. V-1.31 with a reasonably  accurate 
degree of approximation by the  following  procedure. 

Assume a loading  curve of the  form given 
in Fig. V-4.13 where,  for  convenience, only three 
separate triangular  elements are considered.  More 
o r  fewer  triangles  can  be  treated  in  exactly  the  same 
way. For  each  elementary  triangle  there is a "partial 
loading" PI, P2, or  P3. One can  designate  the  general 
component of loading as Pn. For  each  triangle  there 
is also a duration,  with a corresponding  subscript, 
tl, t2, t3, or  for  the  general  case tn. It is assumed 
that  the  value of the  effective  period of vibration of 
the  structure T, and  the  ductility  factor p, a r e  known. 
It is required  to  determine  the  required  yield 
resistance Ry. 

For  any  component of loading  having  a 
duration tn, acting  alone,  use Fig. V-1.31 to  determine, 
for  the  given  period of vibration  and  the  ductility  fac- 
tor  desired,  the  ratio of the  peak  pressure  to Ry. Let 
this  quantity  be  denoted by the  symbol Fn. For  the 
loading  diagram  in Fig. V-4.13, one  may  determine 
values of F1, F2, and F3. These  will  all  be  determined 
for  the  same  ductility  factor  and  the  same  period of 
vibration, of course. Now apply  the  general  approxi- 
mate  relationship: 

(V-4.36) 

For  three  component  loadings  this  reduces 
to 

J 

If both sides of the  latter  equation are multiplied by 
Ry one  obtains  the  result: 

p1 p2 p3 
y F1 F2 F3 

R = - - + - + -  

In the  general  case  one would use  the  relation: 

R = Pn/Fn 
Y 

(V-4.37) 

FIG. P-4.13 TYPICAL LOAD-TIME RELATION CONSIDERED 
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The  maximum e r r o r  in  this  procedure 
a r i s e s  when an  extremely  short  pulse is combined 
with an  infinitely long one.  Under  this  circumstance, 
where  the  subscript 1 refers  to  the  impulse  compo- 
nent,  and  the  subscript 2 to  the  infinitely long duration, 
the  true  relation  becomes 

However,  the  error,  even  in  this  case, of using Eq. 
V-4.36 is not serious. 

V-4.3.5 Energy-Momentum  Considerations 

A simple  method of developing  general 
relations  for a single-degree-of-freedom  system, 
based on the  concepts of energy  and  momentum, is 
described  here (Ref.  V-1.4 and V-4.7). 

It is possible  to  plot  from a curve  such as 
Fig, V-4.9, or for  any  actual  resistance  displacement 
curve, a diagram  (Fig. V-4.14) which shows  the  energy 
absorbed by the  structure as a function of its  displace- 
ment.  For  the  initial  elastic  part,  the  energy  curve 
is a parabola  and  it is concave  upward as long as the 
resistance of the  structure  does not decrease  with 
deflection. The curve  always rises, of course, but 
becomes  concave downward when the  resistance is 
decaying. 

Using this  curve  one  can find two cases  
where  exact  relationships  can  be  derived  for  the  peak 
dynamic  force which can  be  applied  to a structure 
having a given  resistance.  These two cases   corre-  
spond  to (1) a sudden rise of the  dynamic  force to a 
maximum  value  that  remains  constant  for all deflec- 
tions of the structure,  generally  called a "step-pulse"; 
and (2) the  application of the  force as an impulse  be- 
fore  the  structure  deflects  appreciably.  The  first of 
these  corresponds in Fig. V-4.14 to a line  such as OB 
drawn  from the origin  having a constant  slope  corre- 
sponding  to  the  maximum  dynamic  force Pm. The 
work  done  on  the  structure by the  dynamic  force is of 
course  the  force Pm multiplied by the  deflection,  and 
a straight  line  through  the  origin  represents  this 
quantity. Where it  intersects the curve  the  absorbed 
energy  is  equal  to  the  external  energy,  and  one has the 
maximum  deflection Ym produced in the  structure by 
the  step-pulse of loading. 

In the  second  instance  one  can  consider 
that  the  impulse i from  the  loading  is  applied  to  the 
structure so that the  mass of the  structure  acquires 
an  instantaneous  velocity.  The  magnitude of the  in- 
stantaneous  velocity  at  each  mass is equal  to  the 
impulse  divided by the  mass.  From  this  one  can 
derive  the  fact  that  the  initial  kinetic  energy of the 
mass  is  equal  to  the  square of the  impulse  divided by 
twice  the  mass.  This  kinetic  energy is plotted as a 

ENERGY 

t 

DEFLECTION 

FIG. P-4.14 ABSORBED ENERGY VS DEFLECTION 

quantity of input  energy  such as at  F in Fig. V-4.14. 
A straight  horizontal  line  drawn  from  this  point,  such 
as FC, will  intersect  the  curve  defined by the  resist-  
ance at an  absorbed  energy  equal  to  this  initial  kinetic 
energy  and  will  therefore  give  the  maximum  displace- 
ment y h  produced by the  impulsive loading. 

The  maximum  deflection  can  also  be ob- 
tained  directly when a long duration  load is combined 
with an  initial  impulse.  Here  one  draws a line of con- 
stant  slope,  equal  to  the  magnitude of the  long  duration 
loading, from  a  point  such as G that  corresponds  to 
the  initial  kinetic  energy  produced by the  initial  impulse. 

There are some  minor  points  to  be con- 
sidered with this kind of graphical  solution.  The  most 
important of these  is  that  in  an  unstable  resistance 
curve,  it is possible  that  some  particular  point on the 
curve  such as E  cannot  be  reached by a  line  drawn 
from a particular  point on the  vertical  axis such as 
G without such a line  passing  through  some  inter- 
mediate  point of the  energy-displacement  curve. This 
situation  merely  means  that  the  line GD from the i n -  
itial point G tangent  to  the  energy  absorption C L W Y V .  
as at D, is  the  one  that  must  be  used, as al l  def lm- 
tions beyond this  point  will be produced by a  loadin? 
infinitesimally  greater  than  the  one  corresponding t o  
the  intersection  at D. 

V-4.4 DESIGN RELATIONS FOR APPLIED FORCE 

The  general  procedure  outlined  in  the  section, 
immediately  preceding,  can  be  formalized  into 
equations  which are useful in the  design of systems 
subjected  only to force.  The  general  equation 
(Ref. V-1.4)has  become known as the  damage- 
pressure-level  equation. 
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V-4.4.1 Damage-Pressure-Level  Equation 

For an elasto-plastic  resistance 
(Fig. V-4.9) the  relations shown  in Fig. V-4.14 can 
be  stated in the  form of equations a s  follows. 

If the  force  is of infinitely  long  duration, 
the  external  work done i s  equal  to the internal  energy 
absorbed  at  maximum  deflection. Then, 

or  

'm 0.5 - 
R 

Y P 
(V-4.38) 

where p = the  "ductility  factor" or  the  ratio of y /y 
m Y' 

On the  other hand, if a  triangular  forcing 
function  acts  for  a  very  short  time  td,  the  positive 
impulse is 0.5 P td and  the  initial  kinetic  energy of 
the  mass is 0.E Pk t$/2M. However, this  energy 
is equal  to  the  stored  energy  at  maximum  deflection, 
as before. Hence,  with use of the  relation, 

one  can  derive  the  result 

" ' m -  -T 
R 

Y td 
(V-4.39) 

Equation V-4.39 applies when td is   very 
small  and Eq. V-4.38 when  td is very  large.  Trials 
with  various  combinations of the  equations  led  to  the 
following generally  applicable  empirical  result 
(slightly  different  from  the  previous  versions of the 
same equation,  but with some  theoretical  advantages, 
as will  be shown later): 

"- pm - 
R nt d m  + 2 p  (V-4.40) 

Y d 21-1(1+ - 1 2T 
IT td 

Equation V-4.40 is in e r r o r  (compared 
with  the  exact  solution  in  Fig. V-1.31) by less  than 
8.4% over  the whole range of values of td  from  zero 
to  infinity  and of p from 1 to infinity.  The e r r o r  is 
less  than 5% for  all  values of td if p is less  than 100. 

A more  general  relation  has  been  derived 
in Refs. V-4.7 and V-1.4 which is accurate  for  any 
nonlinear  resistance-deflection  curve  that  is not 

unstable. If we designate by the  symbol A the  ratio 
of the absorbed  energy  up  to  a  deflection ym,  relative 
to  the  elastic  energy  up  to  the  deflection  yy,  then  the 
following equation  can  be  derived  directly  from  the 
procedure  described in the  foregoing  discussion  lead- 
ing to  the  derivation of Eq. V-4.40. 

pm - 
- 

T f i  + A / 2 p  

' td 2T 
' td 

"- 
R (V-4.41) 

Y 1 +- 

Note that  for  the  elasto-plastic  case, 
- 
A = 2 ~ - 1  (V-4.42) 

The  following relations  are  derived  for 
the  general  case,  but  can  be  adapted to the  elasto- 
plastic  case by use of Eq. V-4.42. 

In Eq. V-4.41 let td approach  infinity,  and 
designate  the  value of Pm for  this  case  as P, , where 

(V-4.43) 

Then compute  Pm/P,, as follows: 

'm 2T P + 2T 1 (V-4.44) 
pm "d f i  1 +- nt d 

- = - -  

Since x must  always  be less than  p2,  for a load- 
deflection  relation which does not involve  hardening 
o r  locking,  for  such  conditions  Pm/Pw  will  always  be 
greater  than  unity. 

Now in m. V-4.41, multiply  both  sides of 
the  equation by td/2 so that we obtain on the  left  the 
quantity iFn/F$,. Then when td i s  allowed  to  approach 
zero, i = lo, and one finds 

(V-4.45) 

If we compute  the  ratio  i/io, we find: 

(V-4.46) 

where i = the area under  the  force-time  curve. 
Note, by comparison of Eqs. V-4.44 and V-4.46, that 

(V-4.47) 
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A plot of Eqs. V-4.44 and V-4.46 for 
values of td/T  greater  than  about 0.5, leads  to  small 
correction  factors (having a numerical  value less 
than 1.8 for ~1 less than 30) to be applied  to  the  values 
of P, in order  to obtain Pm. Such a plot is shown 
- in Fig. V-4.15 for  the  elasto-plastic  case  where 
A = 211 - 1. 

Also in Fig. V-4.15 are shown correction 
factors  to  be  applied  to  the  values of io, always less 
than 1.8, for  values of 1-1 less than 30, to be  used  for 
values of td/T less than 3. 

In other  words, by use of the  correction 
factors  derived  here,  one  can  obtain  accurate  results 
with only small  correction  factors, by using as a 
datum the conditions  .for  infinite  duration  loads when 
td/T is greater  than 1/3 to 1.0, and by using as a 
datum  the  conditions  for  pure  impulse when td/T is 
less  than 1 t o  3. 

The  advantage in the  use of the  preceding 
approximate  procedure  lies  in  the  ease with  which a 
solution  can  be  obtained for a  resistance  function of 
any  shape. Also with  certain  exceptions,  the  most 
notable  being  that of a finite  rise  time,  any  loading 
function  can  be  accounted  for by using Eq. V-4.46 and 
the  appropriate  correction  from Fig. V-4.15; that is, 
the  impulse  defined by an  irregularly-shaped  loading 

function is computed  and  set  equal  to i. When the 
duration td of the  irregularly-shaped  loading  function 
is greater  than 3 times  the  period T, an  approximate 
solution  can  be  obtained by replacing  the  actual  load- 
ing  function by an  initially-peaked-triangular-force 
pulse with maximum  amplitude Pm such  that  the 
replacement  triangle  averages  the  force  under  the 
actual  curve;  the  solution is then  obtained  from 
Eq. V-4.44 and  the  appropriate  correction  from 
Fig. V-4.15. 

V-4.4.2 Effect of Finite  Rise  Times in  Loading 
Function 

The  response of an  SDF  system  to a 
loading  function  with a finite rise  time  provides  one 
graphical  illustration of the  point  made so frequently 
before  in  this  part:  Calculation of the  response of a 
given  system  to a particular  loading  can  lead  to  gross 
misinterpretation of the  general  behavior of the 
system,  For  example,  consider Fig. V-4.16 which 
shows  the  variation of response  with  rise  time of the 
loading  function:  Relatively  small  changes  in  the 
ratio of rise time  to  natural  period of vibration, 
particularly  in  the  vicinity of integer  values of this 
ratio,  can  cause  large  changes  in  the  maximum 
deflection.  Similar  behavior is portrayed  in 
Figs. V-4.17a and  b  wherein  plastic  behavior of the 
system  and  more  general  loading  functions are 
considered. 
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FIG. P-4.16 EFFECT  OF RISE TIME OF  LOAD  PULSE ON RESPONSE 
OF SIMPLE ELASTIC  OSCILLATOR 

The  last  group of figures allow some 
generalization  to  be  made with regard  to  design. As 
the  ratio of rise  time  to  period of vibration  increases, 
the  maximum  displacement  ym  exceeds by succes- 
sively  smaller  amounts  the  static  displacement ys 
(Fig. V-4.16) or  the  yield  displacement yy 

(Fig. V-4.17). Frequently in design  the rise time of 
the  loading  pulse is not known with precision,  and if 
it i s  known precisely,  the  precise  value  applies only 
to a given  loading  function;  there i s  no assurance  that 
the  given  loading  function  will  actually be achieved 
during  the  life of the  structure. In addition  the 
properties of the  structure  can  frequently  vary  signif- 
icantly (of the  order of 250/0) from  the  characteristics 
ascribed  to  it in the  design.  Therefore,  it  is  likely 
that  the  best a designer  can do i s  to  stipulate  the 
limiting  conditions  associated  with  the  loading  and 
the  resistance of the  structure. If it  can  be  reasonably 
assured  that  the  ratio of rise  time  to  natural  period 
cannot  be  expected  to  be  less  than  approximately 3, 
the  yield  resistance of the  structure  can  be  set 
equal  to  the  peak  value of the loading?m, Using  this 
as a design  rule  one  finds  from Fig. V-4.17a that  the 
maximum  response  ym of the  structure  will  corre- 
spond to a ductility  factor between 1 and  approximately 
2. Of course  this is a large  range  in  response, but 
even  the  upper  limit  can  hardly be expected  to  produce 
failure  unless  the  structure is an  unusually  brittle.one. 

Similarly a second  rule  for  design  to  take 
account of the  ratio of rise  time  to  natural  period  can 
be  expected  reasonably  to  be below 3. Because  the 
ductility  factor p can  become  quite  large  for  small 
values of tr/T, it is  safest,  and  reasonable in  view of 
the unknowns entering  the  problem,  to  assume a zero 
r i se  time. 

FIG. P-4.170 APPROXIMATE  EFFECT OF RISE TIME ON RESPONSE 
OF  SIMPLE  OSCILLATOR FOR A DAMAGE-PRESSURE 
LEVEL (P,/Ry) OF 1.0; LOADS OF  LONG  DISTANCE 

l5 See Inset In Figure 4.180 
I I 

RAT'o: PERIOD ' T 
RISE TIME 

FIG. P-4.17b APPROXIMATE  EFFECT  OF RISE TIME ON RESPONSE 
OF  SIMPLE O X I L L A T O R  FOR A RATIO OF PULSE 
DURATION TO PERIOD  OF 2 
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V-4.5  DESIGN  INVOLVING BASE MOTIONS 
(GROUND MOTION) 

V-4.5.1 Shock Response  Spectra 

The  time  history of the  actual  motions of 
the  earth  caused by the  passage of a shock  wave  over 
the  surface  is  very  complex  and  subject  to  consider- 
able  uncertainty.  However,  the  principal  effects on 
equipment  and  structural  components  can  be  described 
quite  readily by use of the  concept of the  shock 
response  spectrum (Refs. V-4.8 and V-4.9), which 
has been used  successfully  in  studies of response of 
structures  subjected  to  earthquake  ground  motions 
(Refs. V-4.10, V-4.11, and V-4.12). Further  aspects 
of the  response  spectrum  applied  to  shock  problems 
arising  from  blast  have  been  published  for  elastic 
systems (Refs. V-4.13 and V-4.14), and  extensions of 
the  spectrum  concept  to  elasto-plastic  systems  have 
been  made  for  earthquake  ground  motions (Ref. V-4.15). 
In these  references  solutions  were  obtained  generally 
by methods  discussed  in  Section V-4.3. A preliminary 
attempt  to  summarize  design  procedures  for  shock 
isolation  systems  has  been  made  in Ref. V-4.16. 

Consider a piece of equipment o r   an  
internal  element of a  structure  supported at a point 
on an  underground  structure which is subjected  to 
motion  from  blast. The equipment  or  element  can  be 
represented  as a simple  oscillator  as shown  in 
Fig. V-4.18 (or V-4.1). 

Let  the  motion of the  mass M be  designated 
by y, the  ground  motion or  support  motion by x, and 
the  motion of the  mass  relative  to  the  support by u. 
The  resistance of the  supporting  spring  connecting  the 
mass  to  the  ground  is R, where  for  an  elastic  system 

R = Ku 

in  which K is  the  constant  for  the  spring. 

The  natural  frequency f of the  oscillator 
i s  given by the  equation 

f =&J& = _  1 
T 

For a given  transient  ground  motion  x(t), 
the  mass M will  be  set  into  motion,  with a resulting 
displacement u which is a function of time.  The 
maximum  value of the  displacement u relative  to  the 
support is called  the  response  spectrum  displacement, 
denoted  herein by the  symbol D. The  maximum  value 
of the  absolute  acceleration of the  mass M is called 
the  response  spectrum  acceleration,  and is denoted 
by Ag, where  g is the  acceleration of gravity.  The 
maximum  value of the  velocity of the  mass  M  relative 
to  the  support is approximately  equal  to  the  following 
more  useful  quantity  called  the  response  spectrum 
pseudo-velocity V, 

V = 2 * f D  

1 R = K u  
/ 
/ 

/ 
I 

A u = y - x  
k 

x, i,x 

FIG. P-4.18 SIMPLE MASS-SPRING SYSTEM SUBJECTED TO 
GROUND MOTION 

For a system  with  zero  damping,  the 
relation  between  D  and A is as follows: 

Ag = ( Z a f )  D 2 

The same equation  applies,  approximately, if damping 
of the  motion  occurs.  The  quantity  D has dimensions 
of length,  V of length  per  unit of time,  and A i s  
dimensionless.  These  quantities  designate  the  same 
maximum  response of the  oscillator  in  slightly 
different  ways. 

For a given  input  motion  and  a  given 
oscillator,  the  values of  D,  V, and A are functions of 
the  frequency f of the  oscillator  (or  system)  consid- 
ered,  modified  slightly by the  damping in the  system. 
A single  plot of the  values of  D,  V, and A can  be 
drawn, as functions of frequency, by use of the  type 
of chart shown in Fig. V-4.19a. The  actual  values 
form,  generally,  a  jagged  curve having roughly  the 
shape of the  upper  part of the  trapezoid  marked  out 
by the  heavy  lines on the  figure. A typical  response 
spectrum  for a simple  parabolic  velocity  pulse  is 
shown  in Fig. V-4.19b. A typical  response  spectrum 
for  a  much  more  complex  input,  corresponding  to a 
strong  motion  earthquake (the El  Centro  earthquake 
of May 18, 1940) i s  shown  in  Fig. V-4.19c, for  several 
different  values of damping.  The  parameter  in  the 
figure  corresponds  to  the  amount of damping  in  terms 
of the  critical  value  for  the  system. 

From  studies of many earth  shock 
response  spectra,  it  has  been found that  the  general 
characteristics  and  approximate  magnitudes  can  be 
plotted on the  chart if the  maximum  values of ground 
displacement,  ground  velocity,  and  ground  accelera- 
tion a r e  known. One does not need to  consider  the 
precise  time  history of the  ground  motions.  (Actually 
there are discrepancies which may  occasionally  be as 
high as a factor of 2, but are  generally  much  smaller. 
However,  the  actual  ground  motions are not known 
even  this  accurately,  and  the  simplification of the 
spectrum  in  this way is usually  permissible.)  Rules 
for  simple  construction of spectra  for  even  compli- 
cated  ground  motions a r e  given  in Ref. V-4.16. 

The  spectra  in  Figs. V-4.19b and  V-4.19~ 
a r e  typical of response  spectra  for  elastic  systems 
subjected to simple input motions  and  to  complex 
input motions.  For  simple input motions,  damping 
has only a  small  effect on the  response,  (Fig. V-4.19b). 
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FIG.  9-4.19a COMBINED SHOCK SPECTRUM ENVELOPE FOR EARTH MOTION 
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:-4.19b DEFORMATION  SPECTRUM FOR UNDAMPED ELASTIC SYSTEMS SUBJECTED TO A  PARABOLIC VELOtlTY PULSE 
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For  complex  inputs,  damping  may  have  a  relatively these  rules,  suitable  for  use  in  ordinary  situations 
large  effect,  especially in the  intermediate  range of corresponding  to  ground  motions  arising  from  nuclear 
frequencies  (Fig.  V-4.19~). blasts,  is  described  here,  in  terms of an "envelope" 

to  the  response  spectrum. 

The following comments  are  made  to 
ass is t  in the  interpretation of response  spectra in 
general. They arise  from  the  definitions of the quan- 
tities  defining  the  spectra,  as  limits  or bounds a r e  
considered. 

As the  frequency of the  responding  system 
decreases,  eventually  it  becomes so small  that  the 
disturbance  takes  place  practically  as a static  motion 
of the  ground, without motion of the  mass of the 
oscillator.  Hence, in the  limit  the  maximum  relative 
displacement  in  the  oscillator  spring, D, must  be 
precisely  equal  to  the  maximum  ground  displacement, 
X,.. Both figures show this  tendency. Also, they 
indicate  that  damping  has  little  effect on response at 
the  very low frequency  region of the  spectrum. 

At the  other  extreme, when the  frequency 
of the  oscillator  is  very high, then the  spring  is  rela- 
tively so stiff  and/or  the  mass so light that  the  mass 
moves with the  same  motion as the  ground,  and  the 
force  in  the  spring  must  be  precisely  equal  to  the 
product of mass  times  acceleration of the  mass, 
which is the  same as the  acceleration of the  ground. 
If there are no discontinuities in the  acceleration 
input  (corresponding  to  infinite  frequencies of excita- 
tion),  then  the  maximum  acceleration of the  mass, A, 
must  be  precisely  equal to the  maximum  ground 
acceleration x,, and  approaches  this  value  more 
rapidly  as  the  damping  increases.  However,  for only 
moderately  large  frequencies,  there  is a substantial 
amplification in the  response  acceleration, as shown 
on the  right-hand  sides of Figs. V-4.20b and  V-4.20~. 

For  intermediate  frequencies  there  is 
generally  a  greater  amplification  in  response,  espe- 
cially in the  cases  where  there is any  large  number 
of input  pulses  and  where  damping is small. Damping 
changes  the  amplifications  and  reduces  them  greatly. 
With no damping,  even  for only one input pulse,  the 
maximum  response,  for  example,  for a single  sine 
pulse of velocity input, reaches a magnitude of more 
than 1.7, and  for  a  single  rectangular  block  pulse of 
input  velocity,  the  maximum  response  is  twice  the 
input.  Damping changes  these  amplifications  some- 
what but not as much as in  the  case  where  there is a 
large  number of input  pulses. 

Although fairly  precise  rules  can  be  given 
for  sketching  approximate  response  spectra  for  any 
input  motions,  primarily  from  consideration of the 
shapes of the input curves of displacement,  velocity, 
and  acceleration,  the  relations involved are   fa i r ly  
complex.  These  rules  are  embodied  in  Figs. V-4.21a 
and b, taken  from Ref. V-4.17. A simplification of 

The approximate  spectrum "envelope" is 
defined as follows: 

(a) A line D = constant,  parallel  to  the 
displacement  scales,  drawn  with  a 
magnitude  equal  to  the  maximum 
ground  displacement. 

(b) A line V = constant,  drawn  with a 
magnitude of 1.5 times  the  maximum 
ground  velocity. 

(c) A line A = constant,  parallel  to  the 
acceleration  scales,  drawn with a 
magnitude  equal  to  twice  the  maximum 
ground  acceleration. 

The  heavy  spectrum  lines  in Fig. V-4.19a 
are consistent  with a typical  set of conditions a t   o r  
near  the  surface of a soil  having  seismic  velocity of 
about 2,000 ft/sec,  with  an  overpressure of 200 psi, 
and a yield of device of about 8 mt (cf Par t  IV). From 
the  plot it can be  seen,  for  example,  that  the  maxi- 
mum  response of a piece of equipment having a 
frequency of 14 cps would be 0.50 in., with a maxi- 
mum  acceleration of 10 g. 

V-4.5.2 Shock Mounting 

This  section is concerned  with  the  problem 
of attachment of equipment  (mechanical,  electrical, 
hydraulic,  etc.)  to  the  protective  structure.  The 
equipment  must  remain  attached  throughout a blast 
and  must  function  in  the  post-blast  state.  It is obvious 
that  the  attachments  must  have  sufficient  strength  to 
transmit  the  forces which are  associated with the 
equipment  accelerations  and with the  relative  distor- 
tions of structure  and  equipment.  The  stiffness of 
attachments  must  be  considered not only in  relation 
to  its  influence on the  magnitudes of transmitted 
forces but also  from  the point of view of possible 
limits of acceptable  relative  displacements  and 
accelerations of equipment  and  structure. 

Since  the  problem  relates  to  the  mounting 
of equipment,  rather  than  to  the  design of major 
structural  components,  it  can  be  assumed  that  the 
attached  mass  is  relatively  small  compared  with  the 
mass of the  structure.  It  follows  that  the  attachment 
forces are negligible in comparison with the  direct 
effects of the  blast,  and  the  motion of the  structure  is 
nearly  independent of the  forces  transmitted  through 
the  attachments. Motion of the  structure  is  taken  as 
the  basic input for which the  mounting  must  be 
designed.  These input data  must  be  obtained  from  an 
analysis of the  response of the  structure  to  ground 
shock  and air  blast,  or  must  be  assumed. 
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FIG. P-4.2h DESIGN SPECTRUM FOR THE APWLUTE MAXIMUM DEFORMATION OF SYSTEMS SUBJECTED TO A HALF-CYCLE  VELOCITY 
PULSE-UNDAMPED ELASTIC SYSTEMS; CONTINUOUS INPUT  ACCELERATION  FUNCTIONS 

X - tdf = 0.4 
ave 

See  also text 

FIG. P-4.20b DESIGN SPECTRUM FOR THE  ABSOLUTE MAXIMUM DEFORMATION OF SYSTEMS SUBJECTED  TO  A  HALF-CYCLE  DISPLACEMENT 
PULSE-UNDAMPED ELASTIC SYSTEMS; CONTINUOUS  INPUT  ACCELERATION  FUNCTIONS 
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Maximum accelerations  or  displacements 
which can  be  tolerated by the  equipment  must  be 
known or  computed.  For  complex  items,  such as 
electronic  equipment,  this  information  should  be 
supplied by the  manufacturer. The permissible 
accelerations  and  distortions of many other  items, 
such as piping, ductwork,  machinery  bases, etc., 
often can  be  investigated  directly by the  mounting 
designer. 

In general  the  conditions which cause 
damage  to  equipment  correspond  to  maximum  values 
of relative  displacement,  relative  velocity  change,  or 
acceleration, but in  all  cases  these  must  be  consid- 
ered as a  function of frequency. In other  words,  one 
can  draw a sor t  of spectrum,  like a response 
spectrum, which defines  damage  to  specific  equipment 
items. At high frequencies, a particular  level of 
acceleration  can  be  defined a s  causing  damage  or 
failure,  This  level  can  usually  be  defined  from 
knowledge of the s t resses  within  the  equipment  and 
the  factor of safety  used  in  its  design.  Accelerations 
of the  order of 1.5 to 2.5 g are not uncommon  for 
fairly  delicate  electronic  equipment  such as cathode 
ray  tubes,  or  for high speed  rotating  equipment with 
small  tolerances,  such as magnetic  drums,  etc. 
Accelerations of the  order of 5 to 10 g are not 
uncommon  for  more  rugged  items of equipment  such 

as motors,  generators,  ventilating  fans,  and  the  like. 
And values of the  order of 20 to 50 g  can  be  attained 
for  small  and  rugged  items. 

For  intermediate  and low frequencies, a 
velocity  step  can  usually  be  defined as causing 
damage.  This  can  be  related  to  the  height of f ree  fall 
onto a hard  surface which the  equipment  might  sustain 
without failure.  Values of 12 to 24 in./sec a r e  not 
unreasonable  for  moderately  resistant  items  or  for 
very heavy pieces of equipment,  and  values of several 
times  this much might  be  reached  for  equipment  with 
well-protected  vulnerable  parts. 

General  rules  cannot be given,  unfortu- 
nately,  for all items of equipment. However, compar- 
ison  with  damage  under  conditions  such as in  transport 
by truck  or rail often  furnishes a valuable  basis  for 
judgment as to  the  vulnerability of specific  items. 
Some  further  discussion of this  and  presentation of 
data are to  be found in Ref. V-4.16. 

Provision  for  Relative  Distortion of 
Equipment  and  Structure. When equipment  must  be 
connected  to  the  structure at two or  more  points,  and 
when significant  relative  displacements of these  points 
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are anticipated,  the  capacity of the  equipment  and 
attachments  to  accommodate  such  displacements  must 
be  investigated.  Cases of this  kind are not limited  to 
the  obvious  situation  in which the  equipment is 
attached  to two structures having independent  motion 
components. m i t e  often  structures are designed  to 
undergo  substantial  distortion,  particularly  in  flexure 
modes. A few examples  are shown in Fig. V-4.22; in 
each  example,  points a and  b  undergo  significant 
relative  displacements.  This  displacement  may  be 
either  elastic  or  elasto-plastic. If some  plastic 
distortion  is  anticipated its magnitude  may  be  very 
sensitive  to  small  changes in the  assumed  loading on 
the  structure. If this is the  case,  relative  displace- 
ments  should  be  computed on the  assumption of 
maximum  structural  distortion; i.e., distortion 
corresponding  to  conditions when the  structure  is  at 
the point of collapse. 

It  should  be  emphasized  that  relative 
displacement of attachment  points  may  be  accommo- 
dated by elastic  or  elasto-plastic  distortion of the 
equipment, by flexible  joints,  slip-couplings  or  other 
devices  incorporated  in  the  equipment, by elastic or 
elasto-plastic  distortion of the  attachment,  or by 
some  combination of these  factors. It may  be  quite 
unrealistic  to  attempt  to  supply all of the  required 
accommodation  in  the  attachments. In piping o r  
conduit,  for  example,  provision of bends o r  loops 
rather  than  a  straight  run  between  the  connected 
points  may  permit  the  entire  relative  motion  to  be 
absorbed by flexural  distortion of the pipe. 

Nature of Elastic  Systems  Comprised of 
Mounted Equipment. In general  any  piece of mounted 
eauioment  comprises  a  multi-degree-of-freedom “ I 

elastic  system  (or  elasto-plastic  system) which 
responds  to  the  motion of its support  points  (points 
of attachment  to  the  structure). If the  equipment  is 
so connected  to  the  structure  that  relative  distortions 
of the  structure  can  be  accommodated without serious 
s t resses  in equipment  and  attachments, a desirable 
condition,  the  stresses  in  the  equipment  and  forces 
transmitted  through  the  attachments  will  be  primarily 
a function of accelerations of the  equipment.  The 
major  problem of analysis  thus  is  determination of 
equipment  accelerations.  The  products of equipment 
masses  (concentrated  or  distributed)  and  correspond- 
ing accelerations  represent a loading  for which the 
corresponding  stresses  and  support  forces  can  be 
found by conventional  methods of stress  analysis.  

Every  system has many degrees of 
freedom  and  corresponding  modes of motion,  and  the 
total  motion is  comprised of the  sum of the  responses 
in  each mode. Fortunately  most  systems  have  only a 
very few, easily  recognized  modes of predominant 
significance which contribute  most of the  response  to 
a  specified  direction of support motion. Consequently, 
it  usually  is  sufficient to determine  the  response in 
each (often  only one) of these  predominant  modes. 
When it  is  deemed  necessary  to  determine  the 

FIG. P-4.22 RELATIVE DISPLACEMENTS  WITHIN  A  STRUCTURE 
ASSOCIATED WITH STRUCTURAL  DISTORTION 

response  in  more  than  one  mode,  advantage  should  be 
taken of the  fact  that  peak  values of stresses  and 
reactions  in  the  separate  modes are unlikely  to  occur 
simultaneously.  Thus  the  combination of values  from 
the  separate  modes  should  be  based on probability 
considerations. 

In some  instances  the  flexibility of a 
piece of equipment  and  its  attachments  may  be  limited 
almost  entirely  to  the  latter.  This would be  the  case, 
for  example, if an  electric  motor  were  attached  to  the 
structure by relatively  soft  spring  mountings. In 
other  cases  the  attachments  may  be  very  rigid  and 
the  equipment  may be relatively  flexible. An example 
of the  latter would be  piping  having a relatively  small 
ratio of diameter  to  distance  between  points of 
support. 

In many instances  for which the  equipment 
has a mass  distributed  over  considerable  length, or 
area,   i t   is  convenient  to  approximate  the  distributed 
mass by one  (or a few) mass  concentrations. 

Design of Mounted Equipment  to  Resist 
Shock. In a typical  case,  an  underground  structure 
may  be  considered  to  move  with  the  ground  in 
accordance  with  the  free-field  motions  at  or  near  the 
base of the  structure.  Consider a situation  where 
the  motions a re   such  as to  lead  to the response 
spectrum  for  design shown in Fig. V-4.19a. If a 
piece of equipment is to  be  mounted  in  the  structure, 
the  equipment  must  be  designed  for  the  response  it 
would receive.  This  response  is  determined by the 
frequency of the  system  composed of the  piece of 
equipment, i t s  mounting  bracket  or  connections,  and 
the  part of the  structure  to which it i s  attached. In 
general  the  structure  is  rigid enough so that  all  parts 
of the  structure  have  the  same  motions  and  conse- 
quently  the  input  motion  for which the  equipment  is  to 
be  designed is the  free-field  earth motion. 

- 
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If the  equipment  is a heavy, compact 
element  mounted on a bracket,  one  must  make  an 
estimate of the  natural  frequency of the  system. It 
will be possible in most  cases  to  assume  that  the 
point of attachment of the  bracket  to  the  wall of the 
structure  is  a  fixed point of support. Then from  the 
flexibility of the  bracket  and  the  magnitude of the 
supported  mass,  one  can  compute  the  natural  frequency, 
This  can  be  estimated  fairly  well by determining what 
the  static  deflection of the  system would be in the 
direction of motion  due  to  a  force  equal  to  the weight 
of the  supported  element. If this  deflection  is y;, then 
the  frequency f i s  approximately: 

f = && (V-4.48) 

where  g is the  acceleration of gravity. 

For  example,  consider  a  piece of equip- 
ment which  with its  attachment  plates  and  bolts  weighs 
1,000 lb, bolted  to a plate which i s  welded to  the 
flanges of two channels,  and  attached  to  the  wall of a 
s t ructure   as  shown  in  Fig. V-4.23. 

The  channels have a web thickness of 
0.51 in. and  a  net  height of web of 11.0 in. The  spring 
constant  for  the two channels,  each 1 ft  long, consid- 
ered as deflecting without  end rotation,  because of the 
fixity of the  web by the  flanges,  may  be  computed. 
The  deflection ys due  to a weight of 1,000 lb  turns  out 
to  be 0.014 in., and by use of Eq. V-4.48, one  obtains 

f = 26.5 C ~ S  

The maximum  static  stress in the web i s  5,300 psi. 

For  the input data  given,  one  finds  from 
Fig. V-4.19a that  the  acceleration  response  at a 
frequency of 26.5 cycles is about 20 g. This  means 
that  the  equipment  mass  will  be  subjected  to a maxi- 
mum  acceleration of 20 g,  and it  also  means  that  the 
bracket  will have a  stress of 20 t imes  the  stress 
computed  for  the  weight of the  equipment, o r  106,000 
psi,  in  addition  to  the  static  stress,  or  a  total of 
111,000 psi. The bracket  is  clearly  overstressed. 

It i s  not necessarily  true  that  strengthen- 
ing the  bracket  will  work  with  full  effectiveness  in 
reducing  the  stress,  because  adding  to  the  strength  at 
the  same  time  adds  to  the  stiffness  and  attracts  more 
force  because of the  consequent  increased  acceleration 
response.  For  example,  doubling  the  number of 
channel  supports  increases  the  frequency  to 37.6 cps 
and  gives  an  acceleration  response of 28 g,  which 
resul ts  in a s t ress ,  including  static  stress, of 
77,000 psi. 

On the  other hand, if the  bracket  were 
subjected  to  an input motion only one-third  as  great, 

the  spectrum  response  values would be  decreased  to 
one-third  their  value  and  the  net  stress would 
correspond  to  an  acceleration of about 6.7 g ,   o r  
38,000 psi,  plus  the  static  stress of 5,300 psi, which 
would be  acceptable. 

In general,  it  is  desirable  to  provide as 
much flexibility in the  mounting as  possible without 
sacrificing  strength,  to  keep  the  response as low as 
possible, both for  the  equipment  and  the  mounting 
itself. 

One may  use  the  shock  spectrum in very 
nearly  the  same way to  design  for a limiting  condition 
of acceleration,  relative  velocity,  or  displacement 
relative  to  ground. 

Design Stresses in  Shock  Mountings. If 
the  forces  transmitted  through  the  attachments are 
determined on the  basis of elastic  behavior,  it  should 
be safe to  proportion  the  attachments  for  yield 
s t resses   a t  peak  transmitted  forces. If brittle  mater- 
ia l s   a re  avoided  the  plastic  distortion  available 
generally  will  be  substantially  larger  than  the  elastic 
distortion which occurs  up  to  the point of yield. 
Consequently,  actual  fracture is not likely. 

It i s  not feasible  to  recommend  general 
stress  levels  for  use  in  the  equipment  itself  since 
these depend on the  function of the  equipment  and  the 
extent  to which that  function would be  impaired by 
large  strains.  For  those  items involving ductile 
materials  and  where  plastic  strains would not impair 
the  post-blast  function,  yield  values of s t r e s s  will  be 
acceptable. 

V-4.5.3 Response  Spectra  for  Inelastic  Systems 

It i s  often  possible  to  permit  yielding  to 
take  place in the  shock mounting  in order  to  achieve 
an  economical  design, or in order  to  limit  the  accel- 
eration  imposed on the  equipment  supported by the 
shock mounting. 

Studies  that  have  been  reported in 
Refs. V-4.15 through V-4.20' indicate  that  for  an 
elasto-plastic  system, a response  spectrum  can  be 
obtained  for  the  elastic  component of displacement, 
and  hence  also  the  acceleration,  from  the  response 
spectrum  applicable  to  an  elastic  system  having  the 
same  parameters (namely  spring  constant  and 
frequency) as the  initial  elastic  part of the  elasto- 
plastic  system. 

*It should  be noted that Refs. V-4.18 through V-4.20 
consider  nonlinear, but elastic  systems.  The  latter 
restriction  to  the  results  is not present in the 
studies of Refs. V-4.15 and V-4.17. 
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I -  f t  Long 

FIG. P-4.23 EXAMPLE OF BRACKET  MOUNTING 

Numerous  data  have  been  tabulated  for 
the  response of nonlinear  systems. The resul ts  ob- 
tained are in general  similar  to  those shown in Fig. 
V-4.21 which illustrates  the  elastic  component of re- 
sponse in an  elasto-plastic  system  having a ductility 
factor p ranging  from  purely  elastic ( p  = 1) to highly 
plastic ( p  = IO). The input motion  considered is that 
for  the  El  Centro  earthquake,  for which response 
spectra  for  an  elastic  system  were  reported  in Fig. 
V-4.19~. A viscous  damping  coefficient of  2%  of crit- 
ical, in the  elastic range, was  used.  Similar  results 
are obtained  for  simpler  input  motions. 

Elementary  considerations of the  sort  de- 
scribed  in  the  latter  part of Section V-4.5.1 suggest 
that  even  for  an  inelastic  system, when the "frequency," 
defined,  for  example, for the  elastic  initial  portion of 
the  resistance  curve,  is  very low, the  maximum  rela- 
tive  displacement D must  be  the  same as the  maximum 
ground  displacement xm. Hence  for  elasto-plastic 
resistance,  the  elastic  component of maximum  rela- 
tive  displacement  must be 1 times  the  maximum 
ground  displacement.  The  data in  Fig. V-4.21, and 

I.I 

similar  data  for  other  inputs,  demonstrate  the  validity 
of this  conclusion. 

Also, for  an  inelastic  system, when the 
"frequency,"  however  defined, i s  v e r y  high, the  mass 
must  move with the  same motion,  and  hence  the  same 
acceleration, as the  ground.  Therefore A must  ap- 
proach 2,. In other  words,  for a very high frequency 

oscillator,  the  force  transmitted  to  the  mass  is  inde- 
pendent of the  force-displacement  relation  for  the 
spring.  This  conclusion is verified by the  trend at 
the  extreme  right-hand  side of Fig. V-4.21. Other 
data  for  simpler  inputs  confirm  the  conclusion  also. 

It  appears  that  for  the  intermediate  range 
of frequencies  the  displacement  for  an  inelastic sys- 
tem  is  virtually  the  same as for  an  elastic  system 
having the  same "frequency," as defined  for  the  elastic 
portion of the  resistance-displacement  relationship 
for  the  spring.  However,  from  some point correspond- 
ing to  the  peak o r  apex of the  pseudo-velocity  response 
spectrum,  and  extending  over  to  the  region  at  the  ex- 
treme  right,  where  force  is  preserved,  heuristic 
reasoning  suggests  that  energy  is  constant in both  the 
inelastic  and  elastic  systems. 

It is  conservative  to  use  this  relationship, 
of constant  energy  rather  than  constant  displacement, 
for  the  entire  mid-range of frequencies. 

The  above  reasoning  can be summarized 
in  quantitative  form  for  elasto-plastic  systems, as 
follows: 

If the  ductility  factor  for  the  elasto- 
plastic  system is p, the  location of the  modified 
spectrum  can  be  given as a function of p relative  to 
the  elastic  spectrum. 

In the  left-hand  part of the  spectrum,  for 
low frequencies,  the  total  displacement of the  elasto- 
plastic  system  is  the  same as for  the  elastic  system; 
hence  the  elastic  component of displacement,  and 
therefore  the  acceleration,  is  reduced by a factor 
1 /p  in the  elasto-plastic  system. 

In the  right-hand  part of the  spectrum, 
for high frequencies,  the  acceleration of the  elasto- 
plastic  system  is  nearly  the  same as for  the  elastic 
system;  hence  the  total  displacement of the  elasto- 
plastic  system  is  increased by a factor p times  that 
of the  elastic  system. 

In the  central  part of the  spectrum,  the 
total  energy  absorbed in the  elasto-plastic  system  is 
the  same as that  absorbed in the  elastic  system. 
Hence the  total  displacement is reduced by the  ratio 
p /  n, and  the  acceleration  reduced by the  ratio 
1/ .k$% for  the  elasto-plastic  system. 
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CHAPTER V- 5 

MULTI-DEGREE-OF-FREEDOM SYSTEMS AND MODAL  ANALYSIS 

Most  structures  consist of a complex  assem- 
blage of individual  elements  such as beams,  columns, 
t russes ,  and  slabs;  therefore  their  response  to  time- 
dependent  loading or  motion  involves  multiple fre- 
quencies  and  corresponding  multiple  modes of vibra- 
tion. Further  each  structural  element  and  the  com- 
ponents of each  element  may  be of themselves  complex 
members.  For  example,  as shown in  Section V-4.2 
even a simple  beam  has  an  infinite  number of frequen- 
cies  and  mode  shapes,  any  or all of which may  be 
present  in  the  general  response  to a dynamic loading. 
Fortunately, in many  instances, a reasonable  approx- 
imation  to  response  for a given  loading  can  be  obtained 
by consideration of a single mode.  However, in  some 
cases,  either  because of the  complexity of the  structure 
or  the  nature of the loading,  it is essential  to  consider 
responses in which a number of possible  modes of 
vibration  may  be involved. Consideration of a number 
of modes is referred  to as modal  analysis. 

Important as it  is, it must  be noted that  modal 
analysis  or any of the  other  classical  analytical  meth- 
ods are not very  useful in the design of the  structure; 
to perform  these  analyses  one  must know the  distri- 
bution of mass  and  flexibility in the  structure.  For 
that  reason,  these  analyses  are  useful  after,  and not 
before,  specific  proportions of the  structure are 
selected. 

The  emphasis  in this chapter  will  be  placed on 
modal  analysis  and on the  concepts  directly  useful in 
performing a modal  analysis.  Since  various refer- 
ences  describe  modal  analysis  in  detail, only a brief 
and  heuristic  treatment  will  be  given  here.  More  in- 
formation  may  be found  in standard  references  dealing 
with  classical  vibration  theory,  for  example  Refs. 
V-1.35, V-4.8,  V-4.12,  V-4.16, and V-5.1. 

An example of a structure  which can be  approx- 
imated  well as a multi-degree-of-freedom  system 
(MDF system)  with a finite  number of degrees of free- 
dom* i s  a multi-storied  building  with  girders  that are 

*The  number of degrees of freedom is defined as the 
number of independent  generalized  coordinates re- 
quired  to  define  completely  the  motion of a system. 
For  example  a  rigid body in space  has six degrees 
of freedom,  three  translational  and  three  rotational. 
Thus, a coordinate  system  using  three  variables is 
required  to  define the position of the body if it trans- 
lates without rotation  while a coordinate  system  using 
three  other  variables is required  to  define  the  posi- 
tion of the body if it  rotates without translation. 

much stiffer in  flexure  than are the  columns (Fig. 
V-5.la). In this  figure  the  structure  consists of sev- 
eral interconnected  frames, of the  type shown, arrayed 
along a line  normal  to  the  plane of the  figure.  These 
several frames constrain  the  motion  to  occur  predom- 
inantly  in  the  plane of the  figure.  Furthermore,  the 
extension  and  compression of the  columns  produce 
deflections  which are  generally  very  small  compared 
with the  relative  translation  occurring  horizontally 
between  stories;  thus,  the  rotation of each  floor  nor- 
mally is negligible  compared  with  the  relative  trans- 
lation. All of these  observations are necessary  to 
reduce  even  this  simple  structure  to  the  model shown 
in Fig. V-5.lb. 

In the  model  (Fig.  V-5.lb), which i s  frequently 
referred  to as a shear-beam,  the  lumped  masses, M1 
through M4, represent  the  individual  floors:  the  springs, 
K 1  through K4, between  the  masses  or  between M1 and 
the  ground  represent  the bending stiffness of the  col- 
umns;  and  the  coordinates,  y1  through y4  represent 
the  absolute  horizontal  displacements of the  masses. 
These  displacements are shown as vertical in the 
model  (Fig.  V-5.lb)  since it is easier to symbolize 
with meaning  extensional  rather  than  rotational  springs 
and  vertical  rather  than  horizontal  constraint  to  the 
motion, but i t   i s  obvious,  despite  the  lack of corre-  
spondence in the  direction of motion,  that  the  model 
(Fig.  V-5.lb)  represents  the  structure  (Fig.  V-5.la). 
Since  four  coordinates, y1 through  y a r e  needed  to 
define  the  motion of the  model,  it i s  %;r definition a 
system with four  degrees of freedom. 

y3 

y2 

YI 

(a)  Structure (b) Model 

FIG. P-5.1 STRUCTURE WITH STIFF FLOORS  AND FLEXIBLE 
COLUMNS AND  MULTI-DEGREE-OF-FREEDOM  MODEL 
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In general, a model of a  structure with several 
degrees of freedom  may be defined by an  extension of 
the  methods  described  in  Section V-4.2. However,  it 
must  be  emphasized  that a model  having  fewer  de- 
grees  of freedom  than  the  prototype  can  be  developed 
only after a particular  configuration  or  set of config- 
urations  for  the  prototype  is  selected;  for  example in 
Fig. V-5.1, the  actual  structure has an  infinite num- 
ber of degrees of freedom. If only the  lateral  deflec- 
tions  at  each  floor  are of interest,  however,  one  can 
choose only the  masses  lumped at each  floor  level, 
and  the  magnitude of each  lumped  mass,  the  force 
acting on each  mass,  and  the  stiffness of each  spring 
in te rms  of the  mass,  force  and  stiffness of the  actual 
structure  can  readily  be  determined. In the  particular 
example  considered  here  the  model is characterized 
a s  follows: (1) The  lumped  mass  in  each  case  is  the 
total  mass* of the  floor  and of the  items  supported by 
the  floor; (2) the  force  acting on each  mass is the  total 
concentrated  force  acting  at  each  floor  level**;  and 
(3) the  stiffness of each  spring is the sum of the  flex- 
ural stiffness of the two actual  columns  represented 
by the  spring  in  the  model.  Care  must  be  exercised 
in  selecting  the  particular  characteristics of the model. 
Normally  an  appropriate  and  reasonably  simple  model 
can  be  specified by observing  the  physical  constraints 
on the  motion  present in the  actual  structure. 

V-5.1 GENERAL METHODS OF SOLUTION 

Vibrations of structures  constitute a type of 
problem  mathematically  similar  to  other  problems 
such as elastic  buckling,  beams on elastic  founda- 
tions,  and  the  like, in  which under  certain  conditions 
the  distortion of the  structure  is  zero  except when 
some  parameter,  such as vibration  frequency,  buckling 
load, etc., reaches a critical  value. Such problems 
are said  to  have  Eigenvalues  (natural  frequency),  and 
the  configuration  associated  with  an  Eigenvalue is 
called  an  Eigenfunction  or  Eigenvector. 

The  approach  to  determining  the  response of 
complex  systems is conveniently  divided  into two 
parts: (1) Defining the  characteristics of the  particu- 
lar  system when no loads are applied  to  it,  and (2) 
solving  for  the  response of the  system  to a given 
transient load. The  following  development is so 
divided. 

* Approximately  one-half of the  mass of the  columns 
framing  into  the  floor  should  be  added  to  the  mass 
of the  floor. 

** For a force  distributed in some  manner  over  the 
height of the  actual  structure,  the  force  acting on 
each  mass is approximately  equal  to  the  intensity 
of pressure  multiplied by the  wall  area  tributary  to 
the  floor, 

V-5.1.1 Determination of the  Eigenvalues  and 
Eigenvectors 

In vibration  analysis of a multi-degree- 
of-freedom  system  the  values of the  circular  frequen- 
cies of free  vibration  constitute a ser ies  or set  of 
eigenvalues,  and  the  associated  deflected  shape  for 
each  frequency is referred  to as an  eigenvector  (or 
mode  shape),  Sometimes  exact  solutions of the  govern- 
ing  differential  equaltions  can  be  obtained, at other 
times  exact  solutions  are  impractical  and  approximate 
methods  must  be  used.  There are two principal  ap- 
proximate  methods  generally in use: (1) The Ffayleigh- 
Ritz or  energy method and (2) the  Vianello-Stodola 
method.  Both of these  methods are  described below. 
Both methods  become  quite  cumbersome  for  complex 
systems  unless a computer is used  for  the  solutions. 
For simple  systems  or  for  solution of the  fundamental 
frequency of complex  systems  either  method  can  be 
easily  handled  using hand computation. 

Rayleigh-Ritz Method. This  method  was 
suggested  initially by Lord Ffayleigh (Ref. V-1.18), but 
a t  the same  time  he  stated  reservations  about  the 
method  except when it  was  used  to  compute  the  funda- 
mental  frequency. The procedure  was  further  devel- 
oped by Ritz (Ref. V-5.2) to  allow  its  use in computing 
frequencies  for  higher  modes.  It  can  be shown formally 
that  the method leads  to  frequencies which are equal to 
(only if the  precise  modal  shape is assumed)  or  higher 
than  the  true  values. A simple  physical  explanation 
for  this  has  been  given (Ref. V-1.35): If any  deflected 
shape  other  than  the  exact  one is assumed, a restraint 
on  the  motion of the  system is imposed;  this  leads  to 
higher  frequencies  than  the  exact  ones. 

The  method  consists of: ( 1 )  Assigning a 
deflected  shape  to  the  structure  in  the  form of a finite 
series,   each  term of which  satisfies  the  boundary 
conditions; (2) solving  for  the  maximum  potential 
energy  (strain  energy)  stored  in  the  system; (3) solving 
for  the  maximum  kinetic  energy  in  the  system;  and 
(4) equating  the  difference of the  maximum  values of 
the  potential  and  kinetic  energies  to  zero, Using the 
criterion  that  the  coefficients of the  series  selected 
in (1) must  be  such  that  the  total  energy  is a minimum 
produces  the  characteristic  equation  to  be  solved  for 
the  various  frequencies. 

This  procedure  is  based on the  assump- 
tion  that  there is no energy  lost  in  the  system.  Since 
there is no external  force  to do work,  the  maximum 
potential  energy which develops when the  system is 
deflected  to  an  extreme  position  must  equal  the  maxi- 
mum  kinetic  energy which develops when the  system 
passes  through  its  equilibrium  position; i.e., the  dif- 
ference of these  energies  must be zero. By definition, 
the  motion  must  be  periodic so that  the  kinetic  energy 
is proportional  to the square of the  circular  frequency. 
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As an  illustration,  consider  the  simple 
beam shown in Fig. V-5.2. Although it is known that 
the  true  deflected  shape is represented by a sine 
function,  take as an  approximation  the  deflected  shape 
caused by the weight of the beam: 

y x = m I ( ~  wx 3 - 2 ~ x ~ + x ) f o r 0 < x < ~  3  L 

(V-5.1) 

where 

yx = deflection  caused by weight of beam 

w = weight of beam per unit of length 

L = total  span 

E1 = flexural  stiffness of beam 

First  apply the Rayleigh  method  alone  to  obtain  the 
fundamental  frequency.  The  maximum  strain  energy 
U i s  

L L 
2 Mx2 dx w2 z u = 2  J -= -  J (x2 - Lx)2 dx 2EI  4EI 0 

(V-5.2) 
d2Yx 

since = E1 2 = bending  moment  caused by 

weight of beam. 
dx 

The maximum  kinetic  energy  V i s  

v = - J  ( j k )  dx 2w 2 2 
2g 0 

2 3  4 2 3  3 4 2  w w  - (L  x - 2Lx + x  ) d x  
576gE I o 

(V-5.3) 

since fix = w yx = the  maximum  velocity of the  beam 
if w is  the  circular  natural  frequency of vibration, 
and  g is the  acceleration of gravity. 

If the  indicated  integrations are performed  and  the 
last two equations a r e   s e t  equal  to  one  another, 

w2 = 97.59 - EIg 
4 (v-5.4) 

WL 

compared  with  the  precise  value of 

To apply  the  Rayleigh-Ritz  procedure, we 
must  express  the  deflected  shape as a series,  each 

FIG. P-5.2 SIMPLY  SUPPORTED  BEAM WITH UNIFORMLY 
DISTRIBUTED  LOADING 

term of which  must  satisfy  the  boundary  conditions. 
Instead of using  the  deflected  shape  caused by the 
weight of the  beam as a basis  for  the  series in this 
case,  it is desirable  to  choose  an  expression which is 
less cumbersome  to  integrate.  Thus,  take  the  series 

n 
W 

Yx = 1 an sin 1;- 
nnx (V-5.6) 

n=l 

and  select  only  the  first two terms.  Then 

0 

2 

L 

and 

L 
J [a  I s i n -  nx 

1 L2 L 
0 

dx 

a sin - + a  sin - dx 1 L 2 2 F q 2  
IIX 

Integrating,  taking  the  difference  in  the  last two ex- 
pressions  and  setting  the  difference  equal  to  zero, 
yields 

2 n  w L4w 

n 4 E I  g 
U-V = ala + 16a2 - - [aI2 + a2'] = 0 

For a minimum of the  energy: 

and 

w L4w 
" - 16a2 - 

a a2 4 2 
a = 0 (V-5.8) 

II E1 g 

From  these  expressions  it is obvious  that  either 
a1 = a2 = 0, a trivial  case, or from Eq. V-5.7 
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2  2 - x  4 EIg 
ut, = - wL4 

and  from Eq. V-5.8 

2 - 168 EIg - n n EIg 4 4 4  

WL  WL 
w 2 = w  

4 

Each of these  values  for  the  circular  frequency  are 
precise  since Eq. V-5.6 represents  the  exact  deflect- 
ed shape of a  simple  beam  undergoing  free  vibration. 

Vianello-Stodola Method. Although this 
method is  useful  for  finding  the  characteristic  values 
X for  any  equation of the  type  indicated in Eq. V-5.9, 
it  will  be  applied  here  to find the  circular  natural 
frequencies of complex  systems 

[a ( i )  + b(E)/) = 0 (V-5.9) 

Since by definition  the  motion is periodic  the  maxi- 
mum acceleration  yn  is  related  to  the  displacement 
Yn by 

2 y = - w  
n  n Yn (V-5.10) 

Accordingly  the  maximum  d'Alembert  force,  acting in 
a direction  opposing  the  maximum  acceleration, as- 
sociated  with  the  motion of any mass Mn i s  

M j i  = M w  2 
n n   n n Y n  

(V-5.11) 

Therefore,  the  Vianello-Stodola  method, a s  applied  to 
the  problem of finding  circular  natural  frequencies, 
consists of: (1) Assuming a deflected  shape  for  the 
system Ym-1, (2) finding the  d'Alembert  forces con- 
sistent  with  the  assumed  deflections, (3) computing 
the  deflections  ym  caused by the  d'Alembert  forces, 
and (4) finding  the  coefficient which must  be  multiplied 
by the  assumed  deflected  shape  to  make it equal  to 
the  computed  shape.  This  coefficient is   the  square of 
the  circular  natural  frequency w2. A constant  value 
of this  coefficient, found by considering  selected  points 
along  the  structure,  is  obtained only if the  assumed 
deflected  shape  is  the  exact  one. If a constant  value 
i s  not obtained,  a  closer  approximation  to  the  deflect- 
ed shape of the  fundamental o r  lowest  mode i s  obtained 
by using  the  deflected  shape  computed  in  step  (3) as 
the  assumed  shape  and  repeating  the  steps. In fact  it  
can  be shown (Ref. V-5.3) that  the  iterative method 
will  converge  to  the  fundamentalfrequency;  that  is 

where K is  the  "scale  factor" for stiffness  and M i s  
the  "scale  factor"  for  mass.  That is, the  actual  mass 
(or  stiffness) is defined as the  product of a  scale  fac- 
tor  times  a  distribution  or  pattern of mass  (or  stiff- 
ness). 

As an  example,  consider  the  problem of 
determining  the  fundamental  natural  circular  frequen- 
cy of the  simply  supported  beam  in Fig. V-5.2. As- 
sume as a  deflected  shape  the  deflection  produced by 
the weight of the  member  (identical  to  the  illustration 
of the  Rayleigh Method). 

(V-5.1) 

Since $ = & and p = !! w2 y 
dx g  m-1  from Eq. V-5.11, 

successive  integration with substitution of the  appro- 
priate boundary conditions  yields 

2 2  w w  x 

40320 E212g 
(17L - 28L X + 14L X 

7 5 2   3 4  
Ym - 

I , ,  c 1 1  1 
- 4Lx + x ) 6 7  \ v  - 0 . i o  

If the  last  expression  is  evaluated  at  x = - and  the 

result  is  set  equal  to Eq. V-5.1 also  evaluated  at 

L 
2 

x = 2 '  
L 

(L' =- ~- Jm 2 26880 EIg 
277 wL4 - 97 __ 4 WL 

Similarly  for  the  expressions  evaluated  at  x = - L 
4 

u2  g 34.4 X 10 "7 = 137 EIg 
6 

0.251 x 10 W L  6 -  L4 

Since  the  values  obtained by considering  points 
(x = - and  x = T )  along  the  structure are not equal,  it 

is  apparent  that  the  deflected  shape  assumed  is not 
the  correct one. In accordance with Eq. V-5.12, a 
better  approximation  to  the  deflected  shape is   repre-  
sented by Eq. V-5.13. Therefore,  this would be used 
a s  the  assumed  deflected  shape in the  second  iteration. 

L L 
2 

It is  apparent  from  the  foregoing  discus- 
sion  that  formal  solution of the  equations in this  iter- 
ative  process  can  become  cumbersome;  the  integrations 
become  more  tedious  with  each  iteration.  Consequently, 
it is frequently  helpful  to  make  use of numerical  inte- 
gration of the  type  developed  in Ref. V-5.4 in the 
solution of the  deflections  caused by the  d'Alembert 
forces.  Numerical  integration  is  also a particularly 
useful  technique  to  use when a structure,  such  as a 
beam,  supports  several  concentrated  masses  and/or 
contains  several  step  discontinuities in i ts   cross  sec- 
tion (which produce  step  discontinuities in the  distri- 
bution of mass  and  stiffness). 

The  Vianello-Stodola  method i s  a particu- 
larly  powerful  technique  to  be  used  in  finding  circular 
natural  frequencies of systems  with  lumped  masses 
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connected by massless  springs (Fig. V-5.lb).  For 
such  systems  the method can be used  to  find  all of the 
natural  frequencies, and the  computations  can  be  car- 
ried out neatly in a tabular  form  for which the  essen- 
tial  characteristics  were  suggested  first  in Ref. 
V-5.4. A single  mass  from  the  system  (Fig. V-5.3a) 
is  isolated as a f ree  body in  Fig. V-5.3b. The 
d'Alembert  force on each  mass  associated with an 
assumed  deflected  shape  is  defined uniquely by Eq. 
V-5.11. From knowledge of the  d'Alembert  force 
acting on each  mass,  one  can  find  the  forces in the 
springs of the  system.  From  the  forces  in  each 
spring,  the  deflection of each  spring is determined 
since 

4Fn 

Kn 
h y  = __ (V-5.14) 

where 

Ay = deflection of nth spring 

4 F  = force in  nth spring 

K = stiffness of nth spring 
n 

Knowing the  deflection of each  spring,  one  can  find 
the  deflected  shape  consistent  with  the  d'Alembert 
forces,  and  as  before  an  approximation  to  the  circular 
natural  frequency  is  determined by taking  the  ratio of 
the  magnitude  at  each  mass of the  assumed  deflected 
shape  to  the  computed  deflected  shape. If these  ratios 
a r e  not equal,  the  process  is  repeated  using as an  as- 
sumed  deflected  shape  the  computed  shape  from  the 
preceding  trial. 

As an  example,  consider  the  specific  sys- 
tem shown at  the top of Table V-5.1. The  calculations 
for  one  trial are shown in  Table V-5.1. In the  table: 
(1) The  first  column  defines  the  operation  being  per- 
formed in the  rows; (2) the  subsequent  columns  im- 
mediately below the  structure  give  the  numerical 
values;  and  (3)  the  last  column  summarizes  the  units 
which are common  to  the  numerical  values  in  each row. 

Specifically,  the  structure  (Table V-5.1) 
has a spring  constant  for  the  first  story (cf.  Fig. 
V-5.1) which is  four  times  that  for  the  top  story;  the 
spring  constant  for  the  second  story  is  three  times 
that  for  the  top  story.  The  mass  distribution  is not 
quite  uniform, with the  mass of the  second  floor  (MI) 
twice  that of the  third  floor  or of the  top  floor. 

It i s  noted that M and K can  have  any 
magnitudes  assigned  to  them,  and  they a r e  kept in 
general  form  throughout the calculations.  The  mass 
i s  given in terms of the  weight  divided by the  acceler- 
ation of gravity.  Consequently,  the  units  used  in  the 
calculation  have  to be taken  with  consistent  values. If 
the mass is  stated in te rms  of a weight in  pounds 
divided by an  acceleration of gravity  in  inches  per 
second  squared,  and if the  spring  constant is given  in 

te rms  of pounds  per  inch,  the  period  T  will be in 
units of seconds.  Another  set of consistent  units  in- 
volves  displacement  in  feet,  weight  in  kips,  accelera- 
tion of gravity in feet  per  second  squared,  and  spring 
constant in kips  per foot. 

It is  also  apparent  that  the  assumed  de- 
flection ym- 1 can  have  any  units  whatsoever,  and  the 
derived  deflection  ym  will  have  the  same  units. Con- 
sequently,  it is convenient  to  take  ym-l as dimension- 
less.  This  does not affect  the  results  at  all  and  makes 
it  more  clear  that  the  modal  displacements  are  quanti- 
ties  that  give  the  shape of the  deflection  pattern  rather 
than  the  absolute  magnitudes. 

The  calculations  for  the  fundamental  mode 
in  Table V-5.1 for  an  assumed  shape of the  mode  cor- 
respond  to  deflections  at  the  first,  second,  and  third 
story,  respectively, of magnitudes 2, 3, and 3. The 
inertial  forces Fn a r e  computed  from Eq. V-5.11. At 
the  first  mass  adjacent  to  the  base,  the  magnitude of 
the  mass  being 2M, the  value of the  assumed  deflection 
Ym-1 (= 2) i s  multiplied by 2 M  whereas  the  assumed 
deflections at the  second  and  third  levels a r e  multiplied 
by M only. 

The  shears  or  spring  forces A F n  in  the 
various  stories  are  obtained by summing  the  forces 
from  right  to  left,  since  there is no force  applied  at 
the  right.  These  shears,  divided by the  spring  con- 
stants  for  the  various  floors,  give  the  tabulated  values 
of the  increment  in  story  displacement Ayn. From 
these, by starting  with  the known value of zero  deflec- 
tion at  the  support  one  obtains  directly  the  values of 
the  derived  deflection ym. The  final  row  shows  ratios 
of Ym-1 to  ym.  These  give  the  values of w2 at  the 
particular  mass  points  for which the  derived  curve  and 
the  assumed  curve  agree  exactly. 

It can  be  noted  that if w has the  smallest 2 

of these  values,  namely 0.400 for  the  third  mass M3, 
the  derived  curve  will  lie  everywhere  inside  the as- 
sumed  curve  or,  in  other  words,  between  it  and  the 
original  undeflected  position.  This  indicates  that  the 
quantity 0.400 is  an  absolute  lower  limit  to  the  value of 
w2 for  the  first  mode.  It  also  can  be noted that i f  the 
value of w2 has the  magnitude 0.800, as for  the  first 
mass  M1 in  this  case,  the  derived  curve  will  lie  every- 
where  outside  the  assumed  value  and  therefore  this is 
an  upper  limit  to  the  value of w2 for  the  f irst  mode. 
In other  words,  any  value of w2 between 0.400 and 0.800 
can  make  the two curves  agree in part,  although not 
completely; but values  outside  these  limits  cannot  make 
the  curves  agree  at  all. Consequently,  the  true  value of 
d must  lie  between  the  limits  described.* 

*These  observations are applicable only  when the as- 
sumed  curve  and  the  derived  curve of deflections 
have no modal  points  or  points of zero  deflection. 
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( a )  Multi  -Degree-of-Freedom System With Lumped Masses. 

Mn L'n 

I"-- 

(b) Free-Body  Diagram  of nth Mass. 

FIG. P-5.3 ANALYSIS OF SYSTEMS  WITH LUMPED MASSES 

TABLE V-5.1 - ILLUSTRATION OF COMPUTATION OF FUNDAMENTAL CIRCULAR NATURAL FREQUENCY 
BY VIANELLO-STODOLA METHOD 

Operation  Spring 1 Mass 1 Spring 2 Mass 2  Spring 3 Mass 3 Common  Units 

Assumed 
Deflection 0 2 3 3 Ym- 1 

d'Alembert 
Force,  Fn 

*Force  in 
Spring, A F n  

Deflection of 
'Yn 

tcomputed 
Deflection, 0 
Y m  = CAY, 

10 

2.5 

2.5 4.5 7.5 

M 2  TC' Ym-1 

- M 2  
K Ym-I 

Ratio, - Ym-1 

Ym Mw 
0.800 0.667 0.400 K - 

2 

u2 = MnYm-l Ym 

Mn Ym 

89 - 0.517 from Eq. V-5.15. K 

*A compression of the  spring is taken as positive;  note  that  there is no external  force  applied to M 

tNote  that  the  left  support of the  entire  system  does not deflect. 
3' 
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Since  the  individual  ratios  between as- 
sumed  and  calculated  deflections a r e  not constant,  the 
assumed  deflected  shape  is not the  correct  one. A 
new trial,  using  the  values of ym computed a s  
assumed  deflections, would improve  the  correspond- 
ence  between  the  individual  ratios.  Frequently, how- 
ever', it is sufficiently  accurate  (Ref. V-5.5) to  use 
the  approximation shown at  the  bottom of the  table  to 
find the  natural  frequency;  that  is,  for any step in the 
iteration  process 

w2 g 2 Mn Ym-1 ym - K 
2 -xi : Mn Ym 

where K is the  "scale  factor"' for stiffness  and M 
is the  "scale  factor"* for mass. 

From  this  equation, as shown  in Table 
V-5.1, w = 0.517". It will  be shown later  that  the 

exact  value is 0.500 - 

2 K 
1 M K  

M' 

The  pattern of derived  deflections, 2.5, 
4.5, and 7.5,  relative  to a deflection of unity at  the 
first   mass above  the  base,  has  the  values 1.0, 1.8, 
and 3.0. The  true  pattern for the  first  mode  has  the 
values 1, 2,  4. The  derived  pattern  is  much  closer  to 
the  first  mode  than  is  the  assumed  set of values  cor- 
responding  to 1.0,  1.5,  1.5 relative  to a deflection of 
unity for the  first  mass. It i s  noted that  the  deflec- 
tion  pattern for the  first  mode  is not, however,  nearly 
as accurate  after  one  cycle as is  the  best  value for 
the  first  mode  frequency. 

For  systems  with  lumped  masses  (Fig. 
V-5.3), the method also can  be  used  to find the  high- 
est  circular  natural  frequency  directly.  This  is 
accomplished by performing  the  computations  dis- 
cussed  immediately  above  in  the  reverse  order;  an 
example is given  in  Table V-5.2.  Specifically,  from 
the  assumed  deflections (ym in this  case  because  the 
computations are reversed),  the  change in length of 
each  spring "yn i s  computed. In turn  the  shear  or 
force A F n  in each  spring  is  computed.  From a free 
body diagram of each  mass  (starting  from M3) the 
d'Alembert  force Fn  on each  mass  is  determined. 
Deflections of each  mass y m - l  a r e  computed  from 
the  d'Alembert  force  from Eq. V-5.11. As before 
ratios of ym-l  to  ym  are computed at  each  mass and 
LIZ is  the  required  circular  natural  frequency which 
causes  the  assumed  and  computed  displacements  to 
be  equal  at  each  mass. Again the  ratios  are not con- 
stant which means  that  the  assumed  deflected  shape 

3 

'In accordance  with  carrying  the  common  factors 
separately in the  tabular  computations as shown i n  
Table V-5.1, it  is  appropriate to take  the  stiffness 
of one  spring K (and the  mass M at  one point) as a 
common  factor  and  express  all  other  stiffnesses ( u r  
masses)  in  terms of this  common  factor. 

i s  not correct. As in the  case of calculating  the fun- 
damental  frequency a good estimate of w can  be 
obtained by applying Eq. V-5.15. In this  case  (Table 
V-5.2) w$ = 5 . 9 4 5  compared  with  the  exact  value of 

3 
K M 6.00 -. M 

Because  the  Vianello-Stodola  method  con- 
verges  to  the  lowest  mode for which  any component 
exists in the  assumed  deflection,  the  method  can be 
used in principle  to  compute  higher  frequencies  than 
the  fundamental by removing or  "sweeping"  the fun- 
damental  and  the next computed  mode or  modes  from 
the  assumed  deflections.  However, for systems  with 
more  than  three  or  four  degrees of freedom  the 
sweeping  method is  impractical.  The  removal  pro- 
cess  makes  use of the  fact  that  the  mode  shapes or 
eigenvectors  are  "orthogonal." (See, for example, 
Refs. V-5.5 to V-5.11.)  

The  orthogonality for any two modes 
having deflections  or  eigenvectors  yi  and yj with a 
component at   each  mass point  n in the  structure of 
yIli o r  yllj is  expressed as follows: 

\" y . y .  = O  n n nl nJ 

provided  that  the  frequencies for the  ith  and  the  jth 
mode are  different. 

(V-5.15) 

Since  any  arbitrary  deflection  can  always 
be  expressed as a ser ies  of modal  deflections  (Refs. 
V-5.1,   V-5.5 to V-5.11), one  can  express an assumed 
deflection ya,  having a value a t   mass  point 11 of yna, 
as a ser ies  of modal  deflections, with the  coefficients 
Ci, in the  form 

Yna = IT c .  Y . \- 

I n l  

If this  equation i s  multiplied on both sides 
by MI, yj, where y .  is  different  from  yi, and summed 
over  al l   the  mass~oints,   one  obtains 

n 

L M  y y . = c . S M  y . '  I I  11 na 111 J n  n I ~ J  

because a l l  the values of ci  other  than  for i = j will  be 
multiplied by a term which equals  zero, owing to  the 
relation  expressed by Eq. V-5.15. 

Then  the  coefficient of the  jth  mode in the 
assumed  configuration, ya, is  determinable  directly 
frc~m the  equation 

Now one  may  use Eq. V-5.16 to  remove 
any  modal  component  from  the  assumed  deflection  for 
which one has values of the  modal  displacements. If 
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the  first  mode  has  already  been  determined,  one  may 
remove  it  and  use  the  Vianello-Stodola  procedure  to 
compute  the  second  mode  frequency  and  deflection; 
and  after  doing so, one  may  remove both the  second 
and first  modes,  and  compute  the  third  mode,  etc. 
Any mode  can  be  removed if its  shape  is known; the 
modes need not be  removed  in  order. However, the 
procedure  will  always  yield  a  result  that  converges 
toward  the  lowest  mode  remaining i n  the  assumed 
deflection. 

For  example,  the  second  circular  natural 
frequency i s  computed in Table V-5.3 for  the  system 
considered  in  Tables V-5.1 and V-5.2. Any deflection 
configuration is  assumed as shown  in the  first  row of 
Table V-5.3. The  components or  values of cj  for  the 
first  and  third  modes  are  computed  from Eq. V-5.16 
using for yn  or  y j  the  computed  deflections in Tables 
V-5.1 and V-5.2. These  components a r e  

2 ~ 2 . 5 ~ 1 + 1 ~ 4 . 5 ~ 1 + 1 ~ 7 . 5 ~  

2 x 2.5 + 1 x 4.5 + 1  x 7.5 c1 = 2 2 2 

- " = 
- 99 5'75 0.0578 

To summarize;  higher  modes  may  be 
computed by the  process of (1) computing  the  modal 
deflections  for  the  fundamental  mode, (2)  assuming  an 
arbitrary  deflected  shape  for  the  second  mode,  (3)  sub- 
tracting  from  the  assumed  shape  the  components of 
deflection  for  the  fundamental  mode by using Eq. 
V-5.16, (4)  computing  the  deflections  for  the  second 
mode by the Vianello-Stodola method, (5) removing, 
by use of Eq.  V-5.16, the  first  mode  deflections,  which 
invariably  creep  in as a  result of round off, from  the 
computed  deflections,  and  (6)  taking  ratios of the 
corrected  assumed  deflections  to  the  corrected  com- 
puted  deflections (of Table V-5.3). Similarly,  to 
compute  the  natural  frequency  for  the  third  mode,  the 
same  steps are followed, but now the  components of 
deflection  corresponding to the  first and second modes 
must  be  subtracted in Steps  (3)  and (5). Although this 
method is theoretically  valid,  its  application  becomes 
quite  tedious  especially if several  modes  must be  con- 
sidered.  Moreover,  because of inevitable  errors, 
including round-off even  in  machine  calculations,  the 
method  loses  accuracy  rapidly as more  modes a r e  
computed. 

Other  Methods,  Application of the 
Vianello-Stodola Method to  systems  with  lumped 
masses,  using  the  computational  format  indicated, i s  
directly  equivalent  to  matrix  iteration  (see pp. 196- 
204, Ref. V-5.1). Although use of formal  matrix 

form of computations  suggested  in  the  preceding  dis- 
cussion is less tedious to perform  especially  for 

2 ~ 1 6 . 5 ~ 1 + 1 ~ ( - 2 6 ) ~ 1 + 1 ~ 5 ~  

c3 = 2 2 2 algebra  is   preferred by many,  the writers  believe  the 2 ~ 1 6 . 5   + l x 2 6   + 1 x 5  

4 5  ="- - 0.00361 systems with several  degrees of freedom. 

The  product of the  component  and  the  corresponding 
deflection is  subtracted  from  the  assumed  deflection 
a s  shown in  Table V-5.3. The  computations in the 
table  then  proceed  in a manner  identical  to  that  in 
Table V-5.1. However, if any deflection  corresponding 
to  the  first  mode  is  present,  the  procedure  inherently 
converges  to  the  fundamental mode. Therefore,  the 
f i rs t  mode  must  again  be  removed  from  the  computed 
deflections.  This  is  accomplished by computing a new 
component  c' as follows: 1 

2 X 2.5 X 0.342 + 1 X 4.5 X 6.301 + 1 X 7 . 5 ~  (-0.653) 
c ;  = 

2 x 2.5 + 1 x 4.5 + 1 x 7.5' 2 2 

"- - - if4 - - 0.0186. 

The  product of this new factor  and  the  computed  de- 
flections  from  Table V-5.1 are used  to  remove  the 
f i rs t  mode. It should  be noted that  the  computations 
in Table V-5.3 should  converge  to  the  precise  value  in 
a single  iteration  since  the  contributions of the first 
and  third  modes  were  removed  from  the  deflections. 
(The  deflection  here  is  totally  defined by three  modes 
since  the  system  has  three  degrees of freedom.)  That 
it  did not converge i s  a result of the  relatively  inac- 
curate  values  used  for  the  first  and  third  mode  shapes. 

Another  method  which has been used 
frequently  for  lumped-mass  systems  is  Holzer's 
method  (Refs. V-4.8 and V-5.12). This  is  an  iterative 
technique of a  nature  different  from  those  previously 
discussed  because  it  requires  assuming  a  value of the 
frequency.  The  calculations  generally  result  in  an 
external  force  being  applied  to  the  terminal  mass. In 
the  physical  problem  this  external  force  does not 
exist;  therefore  several  values of the circular  natural 
frequencies  are  assumed  until  the  external  force is 
eliminated.  The  process  is  expedited by making a 
plot of the  external  force as a function of assumed 
frequency; a continuous  curve i s  obtained,  and a value 
of the  natural  frequency  for  the  system  exists  wher- 
ever  the  curve  crosses  the  frequency  axis. Obviously 
this  method  can  define all natural  frequencies of the 
system.  A  convenient  format  for  the  computations 
and  the  order  in which they a r e  made is diagrammed 
i n  Fig. V-5.4 wherein  the  encircled  numbers  denote 
the  steps  in  the  calculations.  The  assumed  value of 
the  deflection  at  Step (1) is  completelyarbitrary; 
similarly  the  value of the  square of the  circular  fre- 
quency 02 assumed  in  any  iteration may be arbi t rary 
although,  after  the  first set of Computations i s  com- 
pleted,  values a r e  chosen  using  the plot of P as a 
function of w2 as a guide. A  specific  example is 
given  in Table V-5.4 applying  this method to  the 
structure  considered above. 
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TABLE V-5.2 - ILLUSTRATION OF COMPUTATION OF HIGHEST CIRCULAR NATURAL FREQUENCY BY 
VIANELLO-STODOLA METHOD 

Operation  Spring 1 Mass 1 Spring 2 Mass 2 Spring 3 Mass 3 Common  Units 

Assumed 
Deflection, ym 0 

*Deflection of 
Spring, *yn 

Force in 
Spring,  4Fn 

d'Alembert 
Force, Fn 

Computed 
Deflection, 0 

Ym- 1 

3 

12 

3 -4 

- 7  

-21 

33 

16.5 

-26 

.26 

1 Ym 

5 

5 K 
2 Ym Mw 

Ratio, - Ym- 1 
Yn, 

5.50  6.50  5.00 K 

Mw 
- 

2 

2 M n Y m - l   Y m K =  

Mn Ym 
w3 E E = 5.9.4 Eq. V-5.15. K 

*Note that  the  left  support of the  entire  system  does not deflect; a compression is positive. 

I SPRING  MASS  SPRING  MASS APPLIED -.__- 

APPARENT 

P, 
ERATION I I 2 2 O P I  

I I I 

FORCE 

D e f l e c I i o n  o f  Moss,  I b A s s u m e  lw* h 

L Ym l o 1  I II 
Deflecf lon O f  Sprlng, 

d 'aiembert   Force,  
Fn: Mnw2y, @ @ 

Force I n  SDr8np. 
AF, : K Ay, 0 0 

d'aiembert   Force,  
Fn: Mnw2y, @ @ 

@ Plot volue of opporenf  opplled  force, 5 .  ogalnst  assumed  volue of  square 
of clrculor   f requency,  wz. 

Encircled numbers m d m t e   t h e  order In vhlch the c o I c ~ l o l ~ o n s   o r e   p e r f o r m e d .  

FIG. Y-5.4 DIAGRAMMATIC ILLUSTRATION OF APPLICATION  OF  HOLZER'S METHOD 
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Operation  Spring 1 Mass 1 Spring 2 Mass 2 Spring 3 Mass 3 Common  Units 

Assumed 
Deflection,  ym-l 

*Remove  Contri- 
bution of Firs t  
Mode, -clyl 

*Remove  Contri- 
bution of Third 
Mode,  -c3y3 

Net Deflection, 

Ym- i 
d'Alembert 
Force, Fn 

Force  in 
Spring,  AF 

Deflection of 
Spring, Ay 

0 

Ym-1-c1Y1-C3Y3 

n 

Computed 
Deflection, 0 
Ym = CAYn 

*Remove  Contri- 
bution of Firs t  
Mode, -c iyl  

Net Deflection, 
Y, - C i Y 1  Y A  

1 

-0.145 

-0.060 

0.795 

1.590 

1.368 

0.342 

0.342 

+0.046 

0.388 

2.05 

1 

-0.262 

+0.094 

0.832 

0.832 

-0.122 

-0.041 

-0.954 

-0.954 

0.301 

+0.084 

0.385 

2.16 

-0.500 yln-1 

-0.436 Ym- 1 

-0.018 Ym- I 

-0.954 Ym- I 

Mu 
K Ym-1 

2 

-0.653 Mw 2 
K ynl-1 

+0.140 Mw 2 

K Ym-1 

-0.513 2 Mw 
K Ym- 1 

1.86 K 
Mw2 

2 Mn y!!n-l y& K 1.425 K K w2  = " - ms = 2.00 a Eq. V-5.15. 
x Mn Yk 

*See text. 
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TABLE V-5.4 - ILLUSTRATION OF ONE STEP  OF COMPUTATIONS BY HOLZER'S METHOD 

Operation 
Apparent 

Force 
Spring 1 Mass 1 Spring 2 Mass 2 Spring 3 Mass 3 Applied  Common  Units 

Assumed 
Deflection, 0 

yn1-1 

Deflection of 
Spring, A y  

Force in 
Spring, IFI1 

d'Alenlbert 
Force, FIl 

1 

2 

2 13 

2 

513 

5/3 

1 /3 

1/3 

2 

2 

Yn1- 1 

-5/3 * KYnl - 1 

-Since  this did not vanish, a new step in the  computations  must  be  made  starting with a new value for w . 2 

TABLE V-5.5 - MODAL DEFLECTIONS AND PARTICIPATION  FACTORS FOR ILLUSTRATIVE  STRUCTURE 
OF TABLE V-5.1 

Quantity Mode 
1 2 3 

2 
iJ 

UI 

T 

Defl. 3rd floor  (roof) 

Defl. 2nd floor 
Defl. 1s t  floor 

2 M  u .  
I1 I l l  

Y M  u .  2 
I1 11J 

I' j 

0.5 K('M 2 K/M 6 K/M 

1.0 m 2 m  3.464 4- 
1.0(2n JGqiq- 0.5(20 4 m  0.289(28 4- 

4 -1 1 

2 1 -5 

1 1 3 

8 2  2 

22 4 44 

8/22  11/22 1 22 
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Another  method of computing  the  natural 
frequencies which i s  popular  employs  the  use of finite 
differences  to  generate  the  characteristic  equation 
(see pp. 151-157, Ref. V-5.13). 

The characteristic  equation  also  is  de- 
fined directly by use of Lagrange's  equations which 
are discussed in the following section. However, the 
characteristic  equation  normally  is  tedious  to  solve 
for  systems with several  degrees of freedom  since 
the  characteristic  equation  is  a  polynominal, in the 
square of the  circular  frequency, of degree  equal  to 
the  number of degrees of freedom.  The  approximate 
methods  presented  above  frequently are  more  easily 
solved. 

V-5.1.2 Lagrange's  Equations 

Solutions of the  response of a system 
with  several  degrees of freedom  acted upon by forces 
with a  complicated  variation with time  and  with  com- 
plicated  resistance  functions,  and  possibly  damping 
characteristics,  can  be  obtained in a  straightforward 
manner  using  numerical  integration which was  dis- 
cussed  in  detail in Section V-4.3.4. The  approximate 
procedures  in  the  preceding  section  are  used  in  con- 
junction with numerical  methods  to  define  the  period 
and, in turn,  the  time  interval  to  be  used. 

Another method,  presented by Lagrange 
in 1788 (Refs. V-5.1 and V-5.14), i s  fundamental  to 
the  development of modal  analysis;  the  general con- 
cepts  underlying  its  use are  discussed below. 

The equations of motion (n equations)  for 
a conservative  system of n degrees of freedom  can 
be written in te rms  of the  generalized  velocity  yi, 
the  generalized  displacement y i ,  and  the  Lagrangian 
function of the  system L with L  the  difference in 
kinetic (V) and  potential (U)  energies. 

- "" d a L  a L - O  dt ayi  ayi  
(V-5.17) 

Generalized  coordinates in terms of three- 
dimensional  Cartesian  coordinates, 6 ,  7, f * a r e  
defined by: 

* t ,  '7, 5 a r e  used  for  Cartesian  coordinates  here  to 
avoid  confusion with x and y which were  previously 
defined as the  displacement of the  base (or ground) 
and yn the  displacement of a given mass  in  the  sys- 
tem,  respectively. 

Use of Lagrange  equations  for  conserva- 
tive  systems  requires: (1) Choosing  generalized 
coordinates in such way that  each  coordinate  provides 
for a minimum of total  energy in the  system; 
(2) writing  an  expression  for  the  potential  energy u 
for  the  system in terms of  the  generalized  coordinates; 
(3) writing  an  expression  for  the  kinetic  energy V for 
the  system  in  terms of the  generalized  coordinates; 
and (4) substituting  these  into  Lagrange's  equations to 
obtain n linear  homogeneous  differential  equations 
with  constant  coefficients. Solution of these  equations 
produces  the  characteristic  equation,  mentioned  above, 
from which the  natural  frequencies and  mode shapes 
of the  system  can be determined. 

The procedure  is  illustrated by a  simple 
example.  Consider  the  system shown at   the top of 
Table V-5.1. It is  apparent  that y1, y2, y3 represent 
the  generalized  coordinates.  The  potential  energy. U 
i s  

(V-5.19) 

The  kinetic  energy V i s  

+ M y 2  2   MY^^] (V-5.20) 

Since  in  this  case, U is independent of yi  and  V i s  
independent of yi,  Lagrange's  equations  become 

2Mji 1 + K y1 -3Ky2 = 0 

MY2 + K y2 - Ky3 -3Ky1 = 0 (V-5.21) 

MY3 + Ky3 - Ky2 = 0 

It is  easily  verified  that Eqs. V-5.21 are correct by 
isolating  each  mass in the  system as a free-body. 

It is  easily shown that 

y. = c.  sin  (ut + a )  
1 1  

(V-5.22) 

i s  a  solution of Eqs. V-5.21 if c1 = c2 = c3 = 0, a 
trivial  ease, or 

" 

2M 
K ,2 3K 

-2M 0 

3K K 2 K  
M M 

- _  
---, I = O  

(V-5.23) 
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Equation V-5.23 is the  characteristic  equation, a 
cubic  in ~ 2 ;  it   has  three  real  roots: 

0.500 -, 2.00 m, and 6.00 m, which may  be  compared K K K 
M 

with the  values  obtained in Tables V-5.1 to V-5.3.  

Each of the  differential  equations  above is 
analogous  to  the  homogeneous  part of the  equation of 
motion  for  the  single-degree-of-freedom  system Eq. 
V-4.12. Now  if P i e )  is the  ith  component of the  gen- 
eralized  force  applied  to  the  system,  Lagrange's 
equations  become 

ayi ayi 2% - * = Pi(t) (V-5.24) 

each of which is directly  analogous  to Eq. V-4.12. If 
expressions  can  be  written  for  the  potential  and  kinetic 
energies  in  terms of the  generalized  coordinates  and 
if Pi@) is analytic,  direct  solutions  to  the series of 
equations  in  some  cases  can  be found. More  often 
however  it is simpler to add to  the  homogeneous so- 
lutions of Eq. V-5.24 particular  solutions  which are 
written  in the form of trigonometric  series. Use of 
this technique is  the  basis  for  modal  analysis. 

V-5.1.3 Computation of Modal Response 

In any  structure having several  degrees 
of freedom  and  subjected  to a transient  loading  and  to 
time-dependent  boundary  conditions  an  analysis  may 
be  made by numerical  methods,  for  either  elastic or 
inelastic  response.  (See  Refs, V-4.4,  V-5.9, and 
V-5.11.) If the  structure  remains  elastic,  analysis by 
use of the  normal  modes is usually  most  convenient, 
making  use of the  fact  that  the  loading,  boundary  dis- 
placement,  and  response, all may  be  divided  into 
modal  components by the  procedure  described  in  the 
derivation of  Eq. V-5.16. General  methods of making 
this  type of analysis are discussed  in  practically  all 
textbooks on vibration of systems  having  more  than 
one  degree of freedom. Details of the method, with 
examples,   are given in Refs. V-4.8,  V-4.12,  V-4.16, 
and V-5.1 through V-5.11 and  will not be  repeated 
here. 

A discussion of complex  time-dependent 
boundary  motions is contained  very  briefly  in Ref. 
V-4.4 Most of the  other  references  describe rela- 
tively  simple  boundary  motions. 

An illustration of the  computations  for a 
simple  boundary  motion of a structure  supported  at 
only one  boundary  point,  for  only  the  boundary  or  sup- 
port motion  effects, is contained  in  the  following  sec- 
tion. The  procedure  for  handling  transient  loading is 
similar,  and  can  be  taken  from  almost  any of the ref- 
erences  cited  above. 

V-5.2 ILLUSTRATIVE  EXAMPLE-THREE- 
DEGREE-OF- FREEDOM SYSTEM 

In a multi-degree-of-freedom  system  that has 
independent or  uncoupled  modes of deformation  (this 
condition is generally  satisfied  for  buildings),  each 
mode  responds  to  the  base  motion  or  excitation as an 
independent  single-degree-of-freedom  system.  Since 
the  modal  patterns  can  be  multiplied by arbi t rary 
scale  factors, a scale  factor y may  be  defined by 
which to  multiply  the  modal  quantities  that are of 
interest.  The  factor  must  be  such  that  the  response 
to  the  base  excitation  in  the  particular  mode  desired 
is given by the  product of the  modal  excitation  factor 
yj,  the  modal  quantity  desired  aj,  and  the  deflection 
response u(t), for a single-degree-of-freedom  system 
subjected  to  the  same  ground  motion.  The  quantity o 
may  be  the  deflection at a particular  floor  in  the  mode 
considered,  the  relative  story  deflection  in a particular 
story,  the  story  shear  in a particular  story,  the  stress 
a t  a particular  point  in  the  structure, or any  other  such 
quantity it is desired  to  compute.  To  keep  the  pre- 
sentation  general, the sumbol (Y will be used  to 
designate  any of these  various  quantities  that are of 
interest. 

It is then  possible, by proper  definition of the 
modal  participation  factor r j ,  to  write  the  following 
expression for the  response at the  particular  point o r  
in  the  particular  manner  considered, as a function of 
time 

4 t )  = c y j  CYj u(t) (V-5.25) 
J 

In order  for  this  relationship  to  be  applicable, 
the  following  equation  for yj must  be  used  (see  Refs. 
V-4.8,  V-4.12,  V-5.5 to V-5.11): 

- E Mn 'nj 

,C Mn unj 
rj - 2 (V-5.26) 

where un, gi-ves the  deflection at the  nth  mass  point in 
mode j.  It is apparent  from a comparison of  Eq. 
V-5.26 with Eq. V-5.16 that yj is the  coefficient  for 
the  expansion of a constant  unlt  deflection a t  all mass  
points  into a modal series of deflections. 

The  calculations  for yj, in  accordance with 
Eq. V-5.26, a r e  shown in  Table V-5.5 for  the  structure 
of Table V-5.1. 

Because of the  complexities in computing  the 
response as a function of time,  and  because  the  maxi- 
mum  responses  in  the  various  modes do  not necessarily 
occur  at  the  same  time,  one  is  generally  interested 
only in  the  maximum  possible  response. An upper 
bound to  this  maximum  response is obtained by taking 
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the  sum of the  numerical  values of the  maximum 
modal  responses. In other  words,  an  upper  limit  can 
be  written  for  the  particular  function  under  considera- 
tion,  designated by cy, as follows: 

where  the  individual  modal  terms are the  product of 
the  participation  factor y j ,  the  modal  quantity  desired 
oj, and  the  spectral  value of the  displacement of the 
smgle-degree-of-freedom  structure Dj, where  the 
subscript j refers  to  the  value of D for the particular 
modal  frequency o r  period. Two additional  equivalent 
forms of Eq. V-5.27 are convenient  in  certain  cases 
to  permit  use of the  spectral  velocity  response  for  the 
single-degree-of-freedom  system Vj, or  the  spectral 
acceleration  response Aj. These are shown in  the 
following equations: 

or 

Of the  three  preceding  equations  the  one that is most 
convenient  to  use is generally  that  in which the  spec- 
trum  values are most  nearly  constant  for  the  range 
of modal  frequencies  considered.  Consequently, 
Eq. V-5.27 might  be  used  where  the  spectral  dis- 
placement is  nearly  constant, Eq. V-5.28 where  the 
spectral  velocity is nearly  constant,  and Eq. V-5.29 
where  the  spectral  acceleration is nearly  constant. 

If the  modal  displacements are chosen  appropri- 
ately,  the  values of yj  can  be  made unity. In other 
words,  the  modaldeflections  computed  in  the  general 
case  can be modified by multiplying  them by the 
quantity yj, and  it  will  be found that these  modified 
modal  values  will  have a modal  participation  factor of 
unity. This  has  been  done  for  the  values shown in 
Table V-5.5 and  the  modified  modal  values are given 
in  Table V-5.6. Tabulated  in  this  table,  in  addition  to 
the  deflections of the  three  floors, are the  accelera- 
tions of the  three  masses,  the  relative  story  dis- 
placements  in  each of the three  stories,  and  the 
shears  in  each  story.  These  may  be  considered as 
values of (Y for  the  three  modes. With these  quantities 
as given in  Table V-5.6, the  quantities yj, will  be 1.0. 

It  will be noted that  the  modal  deflections  are 
taken as dimensionless,  and  therefore  the  dimensions 
of the  responses are determined by the  dimensions of 
the  single-degree-of-freedom  spectrum  response 
values. 

V-5.3 APPLICATIONS TO DESIGN 

V-5.3.1 Approximations for Design- Applied 
Loads - 

The  basic  procedure  used  in  design re- 
quires  making a reasonable  estimate of the  predom- 
inant  mode o r  modes  excited by the  applied  force. In 
this  section a method is suggested which is sufficiently 
accurate  for  most  cases. 

Consider  the  loading  applied  to a complex 
structure.  The  peak  magnitudes of the  forces at vari- 
ous  points  have a certain  distribution  over  the  struc- 
ture. Define the  resistance R of the  structure  for 
any  deflection,  related  in  magnitude  to  the  "static" 
load  applied  over  the  structure  with  the  same  relative 
distribution as the  peak  dynamic  load  that  produces 
the  given  deflection. Now select  some point on  the 
structure  where  the  deflection  will  be  large.  This 
need not be  the point of greatest  deflection, but it 
must not be a point of very  small  deflection  relative 
to the  maximum  deflection.  Let  the  deflection of this 
point be  the  quantity y. The  value of y when the 
structure  first  yields  "generally," not at   just   one  or 
more  isolated  places,  is yy, and  the  maximum  accept- 
able  distortion of the  structure  is  associated  withym, 

Now select  some  other  point on the  struc- 
ture  where  the  largest  or  nearly  largest  forces  act, 
This  may  be  the  same point defined  for  deflection but 
it need not  be. Let  the aDDlied static  uressure  at   this 
point  be P, and  the  peakvalue Pm. +hen define  the 
resistance R as a force  applied  at  the  same  point, as 

~~~ . 

- 
P, but of course having the  same  distribution as the 
forces P. The  value of Ry i s  then  the  value of R 
which corresponds  to  general  yielding (cf. Fig.V-4.12). 

In determining  the  period  one is concerned 
with  the  vibration of the  structure  in a mode  most 
nearly  like  that which corresponds  to  the  shape in 
which it fails. For  uniform  loading  corresponding  to 
blast  loading  this is generally  about  the  same as the 
fundamental  mode of vibration of a complex  structure. 
In those  instances  where  it is not, one  can  make  an 
estimate of the  period of vibration  in  the  mode  corre- 
sponding  most  nearly  to  the  configuration as it  ap- 
proaches  failure. With these  definitions  the  structure 
is now treated as a simple  system  and Fig. V-  1.3 1 can 
be  used  for  determining  response. 

In some  instances  an  additional  step is 
necessary.  Where a structure has nearly  independent 
modes of deformation which may  be  excited  in  such a 
way as to  produce a possibility of failure  in  more  than 
one mode, special  consideration is required. Such a 
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TABLE V-5.6 - MODIFIED MODAL VALUES (FOR UNIT  VALUES OF MODAL PARTICIPATION FACTORS) 
FOR ILLUSTRATIVE STRUCTURE OF TABLE  V-5.1* 

Quantity Mode 
1 2 3 

U = accel.  3rd  floor  (roof) 

u = defl.  3rd  floor  (roof) 

3 

3 
u - u - displ.  3rd  story 

S - shear  3rd  story 

3 2 -  

3 -  

il = accel. 2nd floor 

u = defl. 2nd floor 

2 

2 

u - u - displ. 2nd story 

S2 = shear 2nd story 

2 1 -  

ii = accel.  1st  floor 

u = defl.  1st  floor 
1 

1 
u = displ.  1st  story 

S - shear  at  base 

1 

1 -  

+16 K/M 

+32 

+16 

+16 K 

+ 8 K/M 

+16 

+ 8  

+24 K 

+ 4 K/M 

+ 8  

+ 8  

+32 K 

-22 K/” 

-11 

-22 

-22 K 

+22 K/” 

+11 

0 

0 

+22  K/M 

+11 

+11 

+44 K 

+ 6 K/M 

+ 1  

+ 6  

+ 6 K  

-30 K ‘M 

- 5  

- 8  

-24 K 

+18 K/M 

+ 3  

+ 3  

+12 K 

*The  constant  factor 1 / 2 2  in  the y ’  values of Table V-5.5 is  factored  out of the  values of this Cable so that only 
whole numbers  appear.  All of the  tabulated  values  are  to  be  divided by 22. 1 

case  is   that  of an  arch which may  fail  in  one of two 
ways,  almost  independently: (1) by compression 
corresponding  to  symmetrical  loading,  and (2) by 
flexure  corresponding  to  antisymmetrical  loading. 
For  this  situation  it  is  possible  to  treat  each  mode 
separately  and  to  investigate  the two types of failure 
independently.  Another case of practical  importance 
i s  a  dome,  for which  both symmetrical  and  anti- 
symmetrical  loading  must  also  be  studied. 

V-5.3.2 Procedures  for  Design - Base or 
Ground  Motion 

In general,  the  analysis  for a multi- 
degree-of-freedom  linear  system  subjected  to  base 
motion can  be  accomplished with a procedure which 
involves  a  number of steps: 

1. Find the  normal  modes  and  associated 
frequencies for the  system.  For  each 
mode,  find  the  response  parameter  (dis- 
placement,  velocity,  stress,  strain,  etc.) 
at  the point desired.  This  may  be  where 
a  piece of equipment i s  to be mounted. 

2. Find the  excitation  coefficient for each 
mode. This  step is defined as the  expan- 
sion of a unit deflection of all  the  masses, 
i n  the  direction of the  base  motion,  into  a 
se r ies  of modal  deflection  shapes, a s  in- 
dicated in Section V-5.2.1. 

3.  Now determine  the  response  spectrum for 
the  displacement,  pseudo  velocity,  and 
acceleration  for a single-degree-of- 
freedom  system. 

4. The  modal  response  is  then  determined 
as the  product of the   s t ress  or particular 
response  in  each  mode,  times  the  excita- 
tion  coefficient  for  that mode, times  the 
single-degree-of-freedom  response  spec- 
trum  value  for  the  frequency of the  mode, 
using  the  terms in Eqs. V-5.27, V-5.28, 
or V-5.29, whichever  equation  is  most 
convenient. 

5. The  maximum  response of the  system  for 
the  particular  response  quantity  that  is 
desired  is   less than  the  sum of the  modal 
maxima, a s  indicated by the  above 
equations. 
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6 .  For  a  system with several  degrees of 
freedom,  the  actual  maximum  response 
will not ordinarily  exceed  greatly  the 
square  root of the  sums of the  squares of 
the  modal  responses  (see Ref. V-5.15). 
Even in a two-degree-of-freedom  system 
the  excess  will  be  less  than 40%. Con- 
sequently,  the  square  root of the sum of 
the  squares  can be used as a design  basis 
rather  than  the  sum of the  modal  maxima, 
particularly  where  the  number of modes 
is   large.  

V-5.3.3 Multi-Degree-of-Freedom  Inelastic 
Systems 

When the  multi-degree-of-freedom sys- 
tem  is  inelastic,  and when the  properties of the 
system  are  determinable,  the method of analysis 
described in Ref. V-4.4 can still be  used,  although  it 
is usually  tedious  to  make  the  calculations  in  this way. 
It certainly would be  too  complex  to  make a complete 
analysis of a system  for  the  purposes of designing it, 
because  the  system would have to be reanalyzed a 
number of times before a final  design  is  reached. 
Based on the  procedures  described in Section V-4.5.3, 
the  following  procedure  appears  to  give a reasonable 
approximation  to  the  response of an  elasto-plastic 
system of two or  more  degrees of freedom. 

1. Determine  the  response as if the  system 
were  elastic,  with  modes  and  frequencies 
corresponding  to  those  obtained  from  the 
initial  elastic  part of the  inelastic  load- 
deflection  relationships  for  the  system. 

2. Take  the  maximum  response, in te rms  of 
internal  forces  or  stresses as given by 
the  corresponding  quantities  for  the  elas- 
tic  system  multiplied by a  factor  depending 
on p, the  ductility  factor or the ratio of 
the  maximum  permissible  displzkement  to 
the  elastic  limit  displacement. 

3. The  factor  for  force  or  acceleration  used 
should  be  chosen as the  value  most  nearly 
representative of the  locations of the 
several  lowest  frequencies of the  struc- 
ture  with reference  to  the  response 
spectrum, as for  the  single  degree of 
freedom  considered  in  Section V-4.5.3. 
That is, use l / p  for  the  extreme  left-hand 
side,   or  for low frequencies; 1 / d m  
for  intermediate  frequencies;  and 1 for 
high frequencies. 

4. For  displacements or  strains,  the  factors 
used  should be those in step 3 multiplied 
by u, or respectively 1, u / , / m  and 
P. 
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CHAPTER  V-6 

STRUCTURAL BEHAVIOR-EQUATIONS FOR DESIGN 

Although some  equations  useful  in  the  design of 
certain  structural  elements  are  presented  in  this 
chapter,  the  presentation  here is neither  a  specifica- 
tion  nor a design handbook; rather  it is a summary of 
the  basis  for  equations which  have become  more  or 
less  generally  used  in  the  field.  Detailed  specifica- 
tions  for  steel  structures are presented  in  Ref. V-6.1, 
and  for  reinforced  concrete  structures in Ref. V-6.2. 
Concepts of structural  design  are  presented  in  many 
texts  such as Ref. V-6.3 for  steel  and Ref. V-6.4 for 
reinforced  concrete. 

Because  the  properties of most  steel  sections 
commonly  used are summarized  in  Ref. V-6.1, the 
emphasis  in  this  chapter  will  be on structural  ele- 
ments of reinforced  concrete.  However, many of the 
general  concepts  applicable  to  the  behavior of rein- 
forced  concrete  are  equally  applicable  to  the  behavior 
of comparable  sections  fabricated of steel  and of 
prestressed  concrete.  The  latter  type of structure 
generally  has not been  considered  suitable  for  use  in 
protective  structures  mainly  because of the widely 
held  suspicion  that its small  resistance  to  rebound, 
primarily,  and  its  reduced  ductility,  secondarily, 
placed  it  at a distinct  disadvantage  compared with 
conventional  reinforced  concrete.  Recent data (Ref. 
V-6.5) indicate  that  reservations  concerning  reduced 
resistance  to  rebound  may not be significant  for  loads 
with  relatively long duration.  Nevertheless  it is likely 
that  more  studies of the  behavior of prestressed  con- 
crete  will  be  required  before it is widely considered 
for  use  in  protective  construction. 

The  expressions  and  concepts  developed  sub- 
sequently are used as the  basis  for  the  analysis of 
several  common  structural  configurations  in  the 
charts  presented  in  Refs. V.1 and V-6.6. Since  these 
references  give  methods  for  quickly  evaluating  the 
behavior  or  vulnerability of structures  and  structural 
components,  the  reader  may  find  them  useful  for 
making a trial   design  or a rapid  evaluation of a com- 
pleted  design.  Each of these  references is volumi- 
nous;  thus  it is impractical  to  attempt  to  make  a  de- 
tailed  summary of their  contents  here. 

V-6.1 RESISTANCE FUNCTIONS 

The  resistance of a given  structural  element is 
most  usefully  characterized as a resistance-deflection 
diagram.  Normally two values of resistance  are  im- 
portant: (1) The effective  yield  resistance  where  the 
general  yielding of a member or of a material  takes 

place,  and  the  member  begins  to  show  an  increase in 
deflection  with  little or no accompanying  increase in 
resistance;  and (2) the  ultimate  resistance which is  
the  maximum  resistance  developed before failure of 
the member is imminent.  For  statically  determinate 
structures,  the  effective  yield  resistance  develops 
when the  material in  the element  begins  to  yield 
generally  at a single point or  isolated  region;  in 
statically  indeterminate  structures, on the  other 
hand, the  effective  yield  resistance  develops when the 
material  in  the  element  yields  generally  at  single 
points or isolated  regions,  the  number of which is one 
more  than  the  degree of indeterminacy;  Le.,  the  ele- 
ment  becomes a mechanism or  deforms without limit 
for  an  infinitesimal  increase  in  load. The formation 
of a mechanism in a statically  indeterminate  struc- 
ture  mustbe taken  into  account or  the  effective  yield 
resistance  will  normally  be  grossly  underestimated. 

V-6.1.1 Flexure Alone 

Beams and One-way  Slabs  (Concrete). 
An under-reinforced  concrete  beam* will begin  to 
yield  generally  at  an  isolated  region when the  steel 
reinforcement  acting  in  tension  reaches  its  yield 
point.  Test  results (Ref.  V-6.7, for example)  indicate 
that  the  "classical"  straight-line  theory  provides a 
realistic  basis  for  estimating  the  strength when the 
steel  first  begins  to  yield.  This  doubtless  is a result 
of the  stress  distribution  in  the  concrete  in  compres- 
sion  remaining  nearly linear for  the  strains  associ- 
ated with initial  yielding of the  tensile  reinforcement. 
The  same  tests  indicate  that  adding  compressive 
reinforcement without making a corresponding  addition 
of tensile  reinforcement  does not change  the  resist- 
ance,  a  fact  attributable to the  change in internal 
forces  caused by the  addition of the  compression  rein- 
forcement (with a  corresponding  decrease  in  volume 
of concrete)  being  comparable  to  the  inaccuracies in 
the knowledge of the  properties of the  materials.  The 
straight-line  approximation  applied  to  rectangular 
cross-sections  (Fig. V-6.1) results in 

M = f pjbd6 = f A jd 
Y Y  Y S  

(V-6.1) 

*An under-reinforced  beam  (ultimate  strength  concept 
of behavior) i s  one  in which the  amount of tensile 
reinforcement is such as to result  in  yielding of the 
steel  before  crushing of the  concrete  occurs. 
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where 

M =  
Y 

f =  
Y 

P =  

j =  

b =  

d =  

As = 

bending (or  resisting)  moment  at 
general  yielding 

yield s t r e s s  for tensile  reinforce- 
ment 

tensile  reinforcing  ratio = - bd 

dimensionless  parameter  defining 
the  distance  between  the  centroid 
of the  internal  compressive  and 
tensile  forces;  i.e.,  the  internal 
moment  arm  divided by the  effec- 
tive  depth. 

width of member or of compres- 
sion  flange 

effective  depth of member which 
i s  the  distance  from  the  surface 
of the  member  subjected  to  the 
largest  compressive  strain  to  the 
centroid of the  tensile  reinforce- 
ment  (see  Fig. V-6.1). 
cross  sectional  area of tensile 
reinforcement 

AS 

In the  preparation of Ref. V-1.36 the  value 
of j was  formally  evaluated for variations  in  param- 
eters  normally  encountered in construction,  and  it 
was shown that Eq. V-6.1 can  be  approximated  to 
within +5%, for  values of p  between 0.003 to  0.02, by 

M = 0.9 pf bd 
Y Y 

2 (V-6.2) 

Furthermore, Eq. V-6.2 is  valid  for  one-way  slabs, 
plates in which the  reinforcement  (excluding  temper- 
ature  reinforcement) is placed  in only one  direction, 
and  approximately  for  T-sections  (Fig. V-6.1). 

A; = p'bd (Comp. Rein.) 

(Tensile  Rein.)  (Tensile  Rein.) 

(a) Rectangular (b) T- Section 
FIG. X-6.1 COMMON SHAPES OF CROSS SECTION FOR ISOLATED 

REINFORCED  CONCRETE BEAMS 

The  ultimate  resisting  moment of an 
under-reinforced  beam or one-way slab  develops 
when (Ref. V-6.4) 

M U Y  = f pbd2 (1-0.6 2) = f y  Asd (1-0.6 3) 
(V-6.3) 

where 

MU = 

f', = 

bending  (or  resisting)  moment  at 
ultimate  conditions. 

ultimate  strength of concrete. 

Formal  evaluation of this  expression  leads  to  an 
approximation which is  identical  to  Eq. V-6.2; i.e., 
the  ultimate  resisting  moment  is  equal  to  the  resist- 
ing  moment  at  general  yielding in under-reinforced 
beams  or  slabs.  That  this  equality  should  exist i s  
easily  explained:  For an under-reinforced  beam in 
which the  possibility of strain  hardening of the  rein- 
forcement  is  neglected,  the  internal  forces do not 
change as deformations in excess of those  existing 
when general  yielding  develops;  thus any  change in 
resistance  must  result  from  a  change in internal 

moment a r m  j as compared  to 

this  change  must  be  small. 
( 

Since  the  internal  resistance  does not 
change with deflections in excess of those  correspond- 
ing  to  yielding,  the  effective  yield  resistance of a 
statically  indeterminate  beam (one continuous  over 
several  supports or one  fixed  against  rotation at  
either  or  both  supports)  subjected  to a uniformly  dis- 
tributed  loading  can  be  directly  evaluated.  For  a 
given  beam, f , b, and d a r e  constant;  thus  the  yield 
moment My a: any  point is  directly  proportional  to  the 
reinforcing  ratio  p  at  the  same  point. If p1 is  the 
tensile  reinforcing  ratio  at one support, p2 is  the 
tensile  reinforcing  ratio  at  another  support and pc i s  
the  tensile  reinforcing  ratio  at (or near)*  mid-span, 
the  uniformly  distributed  load  per  unit of length  b 
acting on the  beam which produces  general y i e l d i 2  
is 

bR = 7.2 f b (%) d 2  [pc + z(p l  1 + p2)] 
Y  Y 

since  for  static  equilibrium  the  maximum  change in 

moment  along  the  beam  must  equal  where L 
i s  the  span of the  member. 

R L2 

*For a beam  fixed  against  rotation  at one support  and 
simply  supported  at  the  other  end,  the  maximum  posi- 
tive  moment  does not occur  at  mid-span.  However, 
the  error  associated with assuming a maximum  at  mid- 
span is less  than 3%. 
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Equation V-6.4 is valid  for  isolated  rec- 
tangular  beams or  for one-way slabs.  Because  con- 
crete  is   assumed to car ry  no tension, a T-section  is 
effectively a rectangular  section  near  the  supports. 
Consequently, the comparable  expression  for T- 
sections,  for which the  effective width of the member 
over  the  support  is*  b'  rather  than  b (See Fig. V-6.1), 
becomes 

or  Ry = 7.2 f Y L  (A) [PC + & (pl + p2)](v-6*5) 

Minimum Amount of Reinforcement. In 
presenting  Eq. V-6.2 above,  it  was noted that  the 
accuracy of the  approximation was evaluated  for a 
specific  range of values of reinforcing  ratio p. In 
general, any value of reinforcing  ratio would be  ac- 
ceptable  between  the  limits  given.  However,  one  must 
be  careful  to  insure  that he inadvertently  does not 
limit  the  ductility of the  member by using a value of 
p which i s  too  small. In this  regard we recall  that 
the  resistance  deflection  diagram  obtained  in a con- 
ventional  static  test  (wherein  deformation  rather  than 
load is applied  to  the  member) of a beam  with  very 
small  amounts of tensile  reinforcement,  the  load  cor- 
responding  to  initial  cracking of the  concrete in 
tension  may  exceed  the  ultimate  capacity of the  mem- 
ber  (Fig. V-6.2). For  this  type of resistance  diagram, 
a step-pulse  loading of infinite  duration with magnitude 
Pm just  slightly  larger  than R /2t would cause  the 
member  to  collapse. On the  otter hand a magnitude 
of force Pm slightly  less  than  Ry/2 would not crack 
the  member. 

Although there are important  questions 
relating  to  the  possibility of having a totally  uncracked 
beam  since  shrinkage  and  temperature  stresses  may 
cause  cracking,  the  situation  just  described  could 
result  in  disastrous  failures both for  static  and  dynam- 
ic  loads.  Thus,  it is important  to  insure  that  the  ulti- 
mate  resistance of the  member is at  least  equal  to  the 
cracking  resistance. Such insurance  is  provided by 
finding  that  minimum  value of reinforcing  ratio  pmin 
which causes  the  ultimate  resistance  Ru  to  equal  the 
cracking  resistance Rc. Alternatively  since  Rc  and 

*Note that b' is the  width of the  so-called  compression 
flange at  the  supports  and  conventionally  p1  and  p 2 
would be  defined a s  Asl/b'd and As2/b'd  respectively. 
If instead  p1 and p2 are  defined as  Asl/bd  and As2/bd 
(unconventional), Eq. V-6.4 would be  valid  directly for 
T-sections,  provided  that  R  is  interpreted  correctly. 

Y 

+The  precise magnitude'of P, depends upon the area 
under  the  actual  resistance  curve  to  the  ultimate 
deflection y cf.  Eq. V-4.38. Y' 

R, are  directly  proportional  to Mc and Mu, the  cor- 
responding  moments  respectively,  these  moments  can 
be  equated.  The  cracking  moment Mc can  be  approx- 
imated  very  closely by: 

I 
M c = f  r c  

where 
f r  = 

I =  
g 

c =  

modulus of rupture of concrete 

gross  moment of inertia of the 
section  neglecting  the  presence of 
the  reinforcement 

half the  total  depth of the  member 
(or  the  distance  from  the  neutral 
axis  to  the  "extreme  fiber") 

Thus  from :q. V-6.2: 

0.9 pmin fybd 2 s f r  'g = f - bh2 c r 6  

and (V-6.6) 

since  the  ratio of h2  to d2 is  nearlv unitv. For  nor- 
mal  values of f r  and f y ,  pmin is in the  range  from 
0.002 to 0.003. 

Maximum Amount of Reinforcement. At 
the  other  extreme,  there is so much tensile  reinforce- 
ment  that  crushing of the  concrete  occurs  before  the 
reinforcement  yields.*  Normally  this is not a prob- 
lem  since  it is uneconomical,  and  frequently  impos- 
sible,  to  place  such an amount of reinforcement in the 
beam.  However,  for  unusually high yield  strengths of 
the  reinforcement,  crushing of the  concrete  can 
precede  yielding of the  reinforcement.  This  phenom- 
enon  has long been  recognized,  and  the  limiting  value 
i s  defined by Eq. 16.2 of Ref. V-6.2. In general  the 
expression is 

Pmax E 

where 

Pmax = 

E U  = 

E =  Y 

0.7 - - f b  E U  
f y  E U +  E Y (V-6.7) 

maximum  reinforcing  ratio  or  the 
"balanced  reinforcing  ratio"  in  ultimate 
strength  concepts. 

maximum  compressive  strain  at which 
crushing of the  concrete  begins. 

to  initial  yielding. 
strain  in  reinforcement  corresponding 

*Such a condition is  referred  to  as  an  over-reinforced 
beam. 
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code,  may,  during  its  lifetime,  be  loaded  to  thevicinity 
of design  capacity many times; if cracks  develop,  there 
immediately  exists  an  aesthetic  problem which may 
also  have  psychological  ramifications,  and  over a 
period of time a structural  problem  can  develop  from 
corrosion of the  reinforcement. In a protective  struc- 
ture,  the  design  load  may  never  be  realized, but if it 
is there  is a low probability  that  the full design  load 
will  be  applied  several  times.  Furthermore  for a 
protective  structure  the  loads  associated with the 
daily  use of the  structure  are  normally a small  frac- 
tion of the  design  load.  These  observations  indicate 
that a basis  for  design  requiring  that no diagonal 
cracks  develop  may  be  entirely  too  conservative. In 
many cases,  reinforced  concrete  members  possess 
a significant  reserve  in  strength  after  a  diagonal 
crack is formed.  Except in those  rare  instances 
where  the  loads  imposed by daily  use of a protective 
structure  are  comparable  to  the  design  loads, it is 
desirable  to  take  advantage of this  reserve  in  strength, 

In Ref. V-1.36 empirical  equations  are 
derived which appear  to  estimate  realistically  the 
resistance of members  failing  under  the  action of 
combined  shear  and  flexure.  The  basic  premise 
underlying  this  derivation  involves  an  assumption 
wherein  the  concrete  fails  in  compression at a lim- 
iting  (fixed)  value of strain  or  at  a limiting  (variable) 
value of bending  moment. An expression is derived 
for  this  moment as a  complicated  function of the 
strength of the  concrete  and  the  properties of the 
cross  section.  Subsequently  this  expression  was mod- 
ified by finding  an  equivalent  approximate  expression, 
and  this  expression  can  be  stated (Ref. V-6.9) in  the 
following  form, 

bRys = 1000  psi b ( 1 + -- E:)(&) 

or  (V-6.9) 

where 
Rys = resistance  at  general  yielding  and  at 

ultimate  conditions  for a beam  subjected 
to  combined  shear  and  flexure. 

pa = average  value of tensile  reinforcing 
ratio  over  the  supports. 

pv = volumetric  reinforcing  ratio of web 
reinforcement  (vertical  stirrups).* 

f J  = cylinder  strength of concrete, &psi. 

Use of an  argument  similar  to  that  pre- 
sented in the  discussion  associated  with Eq. V-6.6 
leads  to a minimum  value  for pv of 0.005 which must 
be  used if the web reinforcement is to  be  effective. 

From  comparison of Eqs. V-6.4 and V-6.9 
it is apparent  that  values  Ry  and Rys can  be  coincident 
for  certain  combinations of the  variables. When R 
exceeds  R  the  member  will  fail  in  flexure; when d e  
converse 1s true  the mode of failure is not clear. 
However, in the  studies  made in preparing  Refs. 
V-1.36 and V-6.2, it  became  apparent  that  failure  will 
occur by flexure if the  required  resistance,  for a given 
depth  d  and  span L, is less  than  that  defined by Eq. 
V-6.10. If the  required  resistance  exceeds  the  value 
given by Eq. V-6.10, failure  is  defined by the  lesser 
of the two values, Ry o r  Rys. 

Y 

(V-6.10) 

where * 
Vex i s  maximum  shear in member, 
which is directly  proportional  to  the 
load  Ry on the  member. 

ft is in psi 

Another  mode of failure  may  theoretically 
occur when a member is subjected  to  flexure  and  shear 
in  combination.  This  has  been  referred  to as pure 
shear,  and  it is characterized by a nearly  vertical 
cleavage (as distinguished  from  diagonal  cracking)  at 
the  face of the  support.  Definition of the  resistance 
associated with this  type of failure  (Ref. V-1.36) has 
utilized  the  value of the  intercept on the  shear  axis of 
the  Mohr  envelope of rupture  for  plain  concrete.  This 
intercept (Ref.  V-6.4) ranges  from 0.2 ft to 0.6 f b .  
Useof  the  lower  value  and  the  internal  forces in the 
beam  leads  to 

Vmax 
" bd - 0.2 f b  (V-6.11) 

Resistance  to  pure  shear  can  be  enhanced 
by providing  inclined  bars  near  the  support. No tests 
of this  system  have  been  made,  and  the  evaluation of 
resistance  has  been  made  heuristically  (Ref. V.l and 
V-6.9). The  approach  involves  defining  a  critical 
section which i s  taken as d,/2 or 0.1 L, whichever is 
smaller,  from  the  face of the  support.  The  shear  at 
this  critical  section  is  then  distributed  equally 
(arbitrary)  to  the  concrete  and  the  inclined  steel. 

*Conventionally a numerical  factor 7,'8 (or j )  would 
*Because  the  possibility of rebound is always  present,  appear  in  the  denominator on the  left  side of this 
only vertical  stirrups are effective  in  elements of equality.  However,  the  experimental  variation of the 
protective  structures.  coefficient  makes  inclusion of this  factor  academic. 
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V-6.1.3 Axial  Load  Alone 

The  resistance  at  general  yielding  and  at 
ultimate  conditions  for  reinforced  concrete  columns 
i s  defined  in Ref. V-6.2; however,  the  specific  pro- 
cedures  applicable  are not explicit  therein.  Therefore, 
it  is of value  to  review  and  to  summarize  the  conclu- 
sions of Ref. V-6.12. 

General  yielding of either a short  tied  or 
a  short  spiral  column  occurs when the  axial  load 
reaches  the  value Ny* 

Since Ast, the  total  cross  sectional  area of longitudinal 
steel,  is  small  compared  to  Ag,  the  gross  cross  sec- 
tional  area of the  column, it normally  is  sufficiently 
accurate  to  use 

Ny 1 Ag (0.85 f h  + f p ) Y g  (V-6.12) 

where 

pg = gross  reinforcing  ratio = -. Ast 
Ag 

The  ultimate  capacity of a tied  column 
occurs  at  the  same  load  and  nearly  at  the  same  deflec- 
tion as that  corresponding  to  general  yielding. On the 
other hand a spiral  column  possesses  more  ductility 
than  a  tied  column,  and  the  ultimate  load  depends upon 
the  volumetric  spiral  reinforcing  ratio ps. The  ulti- 
mate  load  can  be  defined  explicitly  (Ref. V-6.12), but 
it  has  become  common  practice  to  provide a sufficient 
quantity of spiral  (actually  helical)  reinforcement  to 
make  the  ultimate  load  equal  to  the  yield  load.  This 
quantity of spiral  reinforcement  is  obtained by equat- 
ing the  ultimate  capacityt to the  capacity  at  general 
yielding which yields (by rounding  the  coefficient 
slightly  upward) 

where 
f '  = yield  strength of spiral  

A = core  area of column = cross  
reinforcement 

sectional  area  enclosed within 
the  spiral. 

Equation V-6.13 is identical  to  Eq. 9.1 of Ref. V-6.2. 

*Defined by equating  the  contribution of force  from 
each of the  component  materials  to  the  load. A short 
column i s  one which is  assumed  to be unaffected by 
buckling. 

+The  ultimate  capacity a s  in the  case of the  yield 
capacity is  determined by equating  the  contributions 
to the  force of each of the  component  materials  to 
the  applied  load; i.e., 

Nu = 0.85 f &  (A, - Ast) + fyAst + 2 f b  p' A, 

I n  most  cases of interest  here  buckling 
is considered  to  be  unimportant  for  a  ratio of unsup- 
ported  height  h  to  least  lateral  dimension dnl of 
approximately  15  (cf.  Section 916, Ref. V-6.2). The 
strength  is  degraded  linearly  to  zero  for  values  h/dm 
of approximately 50. This  provision of the  code 
appears  to  have no really  rational  basis  except  for 
the  important  rationale  associated with the  successful 
performance of thousands of columns  proportioned on 
this  basis.  A  study of long  columns  has  been  made 
(Ref. V-6.13). 

Recent  studies  (Ref. V-6.14) indicate  that 
under  dynamic  loads,  buckling might be  inhibited  or 
even  precluded.  This  probably i s  a result  mainly of 
the  finite  time  required  for  deflections  associated 
with buckling  to  occur.  However,  until  more  informa- 
tion on this  subject  is  gained,  it  is  probably  unwise 
to  ignore  the  possibility of buckling. 

V-6.1.4 Flexure  and  Axial  Load  in  Combination 

Many of the  components of a s t ructure   are  
subjected  simultaneously  to  bending  and  axial  force. 
The  behavior of such  members  is  concisely  described 
by an  interaction  diagram  (Fig. V-6.4). The  coordi- 

nate  axes  and any curve  parametric in $ define 

a region  which  will  sustain  the  combined  loads without 
failure.  Each  parametric  curve  defines  the  limiting 
combinations which will  cause  failure  to  be  imminent. 
A  group of interaction  diagrams  are  presented  for 
many variations in reinforced  concrete  columns  in 
Ref. V-6.15. Figure V-6.4 provides  a  summary of 
these  diagrams  for  rectangular  tied  columns with 
equal  amounts of longitudinal  reinforcement on each 
face  and  with  a  ratio of effective  depth  h  to  totaldepth 
D of 0.9. The  procedure  used  to  establish  the  dia- 
grams  (Fig. V-6.4) consists of: (1) Assuming  suc- 
cessive  particular  values  for  the  strain  in  the 
longitudinal  reinforcement on one  face of the  member*; 
(2) using  the  Stiissi  or Whitney theories  (Ref. V-6.4) 
which are  basically  equivalent  to  find  the  internal 
forces  consistent with each  particular  value of strain 
assumed  in  (1); (3) applying  the  conditions of equilib- 
rium  to  find  the  axial  force  and  moment  consistent 
with the  internal  forces  computed in (2); (4) plotting 
the  resulting  values on the  diagram;  and  (5)  normaliz- 
ing the  completed  diagram by dividing  the  ordinate 
scale by the  appropriate  axial  load  acting  alone 
(Eq. V-6.11) and  the  abscissa  scale by the  appropriate 
moment  acting  alone  (Eq. V-6.2). For  a  given  cross 
section  each  diagram  can  be  defined by a set of 
equations  (cf.  Section  1902, Ref. V-6.2). However, 
the  procedure  described  above  has  the  distinct  advan- 
tage  that  the  process  is self checking; if an   e r ror   i s  
made,  the  value in e r r o r  will  be  obvious  since  it  will 
not fall on a smooth  curve.  Further  the  process  is 
not as tedious as one might suppose  since only three 

( 5 )  

* The  strain  distribution  through  the  depth of the 
section  is  assumed  to  be  linear. 
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or  four  points need be  computed:  The  interaction 
diagram is so nearly a straight  line  that it is   assumed 
to  be  straight  between  the  intercept on the  ordinate 
and  the  so-called  "balance point";* the  curve  between 
the  balance  point  and  the  intercept on the  abscissa is 
nearly  a  parabola with approximately a vertical 
tangent  at  the  "balance point." 

Two points of major  importance  should 
be  made  regarding  the  interaction  diagrams  for  under- 
reinforced  members: (1) Any radial  line,  passing 
through  the  origin,  has  a  slope  consistent with the 
reciprocal of eccentricity of a force  applied  parallel 
to but a t  a distance  e  (eccentricity)  from  the  gravity 
axis  (Fig. V-6.5); and (2) for  an  under-reinforced 
member,  the  addition of an axial load  can  significantly 
increase  the  moment  capacity.  The  latter is a result 
of the  decrease in internal  tensile  force in the  rein- 
forcement  attending  the  application of an  external 
compressive  force  to a member  subjected  initially 
to bending  alone. Such increases in resistance  do 
not occur in symmetrical  members  fabricated of a 
single  material  (such as a steel  beam)  since  the 
material on both surfaces of such a member is immi- 
nently  failing  under  the  action of moment  alone. 

V-6.2 DEFLECTIONS 

FIG. P-6.4 INTERACTION DIAGRAM  FOR REINFORCED CONCRETE 
BEAM-COLUMNS 

To complete  the  definition of approximate 
resistance  functions  it is necessary  to  obtain  expres- 
sions  for  the  deflection  at  general  yielding  and  at 
ultimate  conditions. 

V-6.2.1 Deflections at  General  Yielding  Beams 
and  Slabs. 

If i t   i s  noted that  Eq. V-6.1 is identically 

equivalent  to  the  familiar  flexure  formula, M = f -,** 
it is easily shown that  the  deflection at  the  center yb 
of a  simply-supported  beam is given by 

IC 
C 

5M L2 5fL2 
Yb = 4 8 E I ,  = 4 8 E c  (V-6.14) 

where 

M =  

L =  

E, = 

c =  

bending  moment a t  mid-span 

span 

modulus of elasticity of the  material 

distance  from  the  gravity  axis  to  the 
extreme  "fiber" of the  member 

* That  combination of axial  load  and  moment which 
causes  the  concrete  to  crush  and  the  "tensile" 
reinforcement  to begin to yield  simultaneously. 

+ *  I is the  moment of inertia of the  so-called  "trans- 
C 

formed  section." 

(a) Act  ua I (b)  Equivalent 
Loading Looding 

FIG. P-6.5 DEFINITION OF ECCENTRICITY  OF NORMAL LOADING 
ON  COLUMN 

Interpreted  in  terms of the  stress  in  the  tensile  rein- 
forcement,  the  deflection  at  yielding Y; 1s given by 
the  following  since  f /E = E by definltlon. Y Y 

5 €  L2 

yY - 48c 
' -Y 

For  normal  variations  in  the  properties of the  mate- 
rials, c, which identically  equals  (1-k), is very  nearly 
equal  to 5/8 d  where  d is the  effective  depth of the 
member.  Thus, 

E L  

Y -  6d 

2 
y' Y Y 

or alternatively,  to  avoid  confusion in units 

(V-6.15) 

Since  for  most  reinforcing  steels  currently in use c y  
averages  approximately 0.0015 in/in.,  Eq. V-6.15 can 
be  written as 

(V-6.15') 
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Study of the  data on simply-supported 
members  failing  under  the  action of combined  flexure 
and  shear  (For  example, Ref.  V-3.5) indicates  that 
Eq. V-6.15 also is valid  for  such  cases. 

Equation V-6.15 used  in  conjunction with 
the  basis  for  Eq. V-6.4 allows  the  definition of the 
effective  deflection  at  yielding  for  beams with other 
support  conditions.  The  "effective  yield  deflection"  is 
used  to  reduce  the  rather  complex  resistance  func- 
tion  to  an  effective  elasto-plastic  one,  and  this  deflec- 
tion is defined as that which causes  the  area  under  the 
effective  resistance  curve  to  equal  the  area  under  the 
actual  curve  approximately. For example in Fig. V- 

6.6, the  area - R y is  set  equal  to  the  area - [R1 y2 

+ R  (y - yl)] . If the  curve  in  Fig. V-6.6 represents 
the  %on%tions  associated with a uniformly  distributed 
loading on a  beam  fixed  at both ends,  the  resistance 
R1  and  associated  deflection y1 represent  yielding of 
the  member  at  the  supports;  the  deflection  Ry  and 
associated  deflection y2 represent  yielding  at  mid- 
span.  The  actual  initial  stiffness of such  a  beam is 
one-fifth* of that of an equivalent  simply  supported 
beam a s  defined by Eq. V-6.15. The  incremental 
stiffness  between y 1  and y2 is the  same a s  that  for  the 
equivalent  simply  supported  beam. Use of these 
values of stiffness  and  the  value of resistance  for  the 
points  where  yielding  occurs a s  defined by Eq, V-6.2 
defines  the following corrections,  for  the  conditions 
of support  indicated,  to  be  applied  to  Eqs. V-6.15 or 

1 1 
2 Y Y  2 

V-6.15': 

2 
y = - .  

Y 4  1 + 0  y' 5 - 2' + 2' for  equal  restraint 
at  supports (V-6.16) 

2 
Y y = % '  y' 5 - 0 + 0 for  partial  restraint  at  one ' e support  and pinned at  other 

support 

where 

0 = ratio of tensile  reinforcing  ratio  at  the 
supports  to  that  at  mid-span 

The  effective  yield  deflection  for two-way 
slabs is not at  this  time  well-documented by either 
theory o r  experiment.  It is apparent  that  this  deflec- 
tion  must  be  smaller  than  the  similar  deflection of 
a one-way slab  with  the  same  dimensions  and  rein- 
forcement. In the  absence of more  definitive  data,  an 
approximation  to  the  effective  yield  deflection  can  be 
obtained by dividing  the  effective  yield  resistance as 
defined by Eq. V-6.8 by the  appropriate  stiffness 
given in Table V-6.1. The  data in this  table  are 
computed  from  information  contained in Ref. V-6.16 
for  elastic  plates on rigid  supports. 

*The  deflection of a beam  fixed  at both ends is ... 2 

DEFLECTION, y 

FIG. Y-6.6 "ACTUAL" AND EQUIVALENT RESISTANCE  FUNCTIONS 
FOR A STATICALLY  INDETERMINATE  BEAM 

Columns.  Because  the  strain*  corre- 
sponding  to  initial  crushing of concrete  subjected  to 
axial  load  alone is nearly  coincident  with  the  strain 
corresponding  to  initial  yielding of the  longitudinal 
reinforcement,  general  yielding of a reinforced- 
concrete  column  (or  a  steel  column)  occurs  approxi- 
mately when the  strain in the  steel  reaches  its  yield 
value c y .  Thus  the  yield  deflection yya i s  

Yya = ' y La 

or alternatively  to  avoid  confusion of units 

where 

(V-6.17) 

yya = effective  yield  deflection of column 

La = total  length of column 

Since  the  concentric  application of a nor- 
mal  force to a member  subjected  already  to  bending, 
does not theoretically  alter  the  angle  change  (curva- 
ture),  the  effective  yield  deflection  for  members  sub- 
jected  to  axial  load  and  bending in combination is the 
same  as  that  for  the  member with no axial  load 
applied.  Consequently,  for  these  conditions of loading 
the  effective  yield  deflection  is  defined by Eqs. V-6.15 
or V-6.16. 

*Experimental  values  range  from 0.0015 to 0.0020 

YY = 4 q  
Nl L which should  be  compared with Eq. V-6.14. iniin.  (Ref. V-6.4) 
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TABLE V-6.1 - STIFFNESS O F  ELASTIC PLATES ON RIGID SUPPORTS 

Ec' * 
Ratio: Short  to Long Stiffness  Expressed a s  Coefficient of 

Span 3 
(Ls)  LL 

L 
(CY = L) Simple  Supports  Fixed  Supports 

LL 

1 .o 252 810 

0.9 230 742 

0.8 212 705 

0.7 201 692 

0.6  197  724 

0.5 201 806 

* i s  defined as the  average  for  the  uncracked  and  transformed  sections which is used in an  attempt  to  approxi- 
mate  the  true  stiffness  (Ref. V-6.9). 

V-6.2.2 Approximation  for  Maximum  Ductility 
Factors  Flexure  Failures  (Concrete) 

Although methods  exist  (Ref. V-6.7) for 
calculating  the  deflection  associated  with  the  ultimate 
strength,  these  procedures  are  at  best  approximate; 
this  occurs  because  the  load-deflection  curve, ob- 
tained  in a static  test of an  under-reinforced  beam, 
exhibits  little  curvature  in  the  range  approaching 
failure.  More  meaningful  values  are  obtained  directly 
from  the  experimental  results.  Because, as shown in 
Chapter V-4, the  resistance of a member  loaded 
dynamically  can  be  defined by the  ratio  (the  ductility 
ratio p )  of the  maximum  displacement  ym  to  the  yield 
displacement yy, it is convenient to  evaluate  the 
experimental  results  in  terms of the  ductility  ratio. 

Figure V-6.7 portrays  the  maximum  value 
of the  ductility  ratio  obtained  in  static  tests of beams 
failing  in  flexure, as distinguished  from  diagonal 
tension,  pure  shear, or bond, (Refs. V-6.7 and V-6.17 
to V-6.19). The  maximum  value of the  ductility  ratio 
is defined as the  ratio of the  maximum  deflection ob- 
served  prior  to  imminent  collapse of the  member and 
the  observed  deflection  at  yielding;  thus,  the  values 
shown a r e  the  maximum  values of ductility which can 
be  used in design.  All  members  except two* with a 
single  load  at  mid-span  actually  had  this  load  applied 

*The results from  these two tests  cannot  be  distin- 
guished  from  the  results of the  tests of the  similar 
members  loaded  through  the  stub  column. 

through  a  stub  column,  an  arrangement  simulating  the 
two beams  framing  into a column  in  an  actual  struc- 
ture. Although the  results  from  tests on this  type of 
specimen  appear  to  indicate  larger  ductilities  gener- 
ally  then  the  results  from  simple  beams with equal 
loads  applied  at  the  third-points  (Fig. V-6.7), the 
number of tes ts  are too  limited  to  draw a definite 
conclusion.  Also as indicated  in  the  legend,  several 
of the  beams  were  subjected  to  flexure  and  axial  load 
in  combination. 

From  the data presented (no other  data 
could  be  located with all the  needed  deflection  infor- 
mation),  the  following  purely  empirical  expression is 
suggested  to  define  the  maximum  ductility  factor  pm. 

where 

P =  
p' = 

(V-6.18) 

tensile  reinforcing  ratio  at  mid-span 

compressive  reinforcing  ratio  at  mid-span, 
but not to  be  taken as greater  than p in 
the  equation. 

In many cases  it  is desirable to proportion  protective 
structures  such  that  collapse is imminent  under  the 
design  loading;  therefore,  use of the  value p m  should 
be  considered  in  applying  the  methods  given in 
Chapter V-4 to  concrete  members  failing in flexure. 
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SIMPLY-SUPPORTED  BEAMS 
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r o t l o  01 opplled 01bo1 load to u l t ~ m a ' e  01101 load I f  no 
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I " 

~ 

3 
DIFFERENCE  IN  REINFORCING  RATIOS ( p - p '  I 

FIG. Y-6.7 DUCTILITY FACTOR  AT ULTIMATE STRENGTH OF REINFORCED-CONCRETE BEAMS 

Concrete  Failing by Combined  Flexure 
and  Shear or by Axial  Load.  Failure i s  relatively 
brittle when it  is  produced by either of these  types of 
loading  in  a mode associated with crushing of the 
concrete  prior  to or simultaneously with yielding of 
the  tensile  reinforcement.  It  must  be  emphasized 
that  failure  caused by combined  flexure  and  shear  is 
ductile  and  defined by Eq. V-6.18 if the  resistance  is 
defined by Eq. V-6.4; the  failure is relatively  brittle 
if the  resistance  is  defined by Eqs. V-6.9 and V-6.10. 

Data  from  tests of beams  failing  in  a 
shearing  mode (Ref. V-3.5, for  example)  indicate  that 
there   is  no apparent  correlation  between  the  properties 
of the  member  and  the  maximum  ductility.  It  appears 
safe  from  the  data  to  assume  a  maximum  ductility 
ratio of 1.5 to 2.0.  

A  similar  lack of correlation  between 
maximum  ductility  and  properties of the  section  exists 
for  tied  columns.  Data  in Ref. V-6.12 and  associated 
reports  indicate a maximum  ductility  ratio of approx- 
imately 2 can be safely  assumed  for  tied  columns.  It 
has long been  recognized  that  spiral  columns  are much 
more  ductile  than  tied  columns.  This  ductility  is 
doubtless  a  function of the  ductility of the  steel  used  in 
the  spiral  and of the  pitch of the  spiral. Although one 
can  argue  that  such a functional  relation  should  exist, 
the  data  are  too  limited  to  investigate  it.  Nevertheless, 
it is clear  that  spiral  columns have a  maximum  duc- 
tility  ratio of at  least 4.  

V-6.3 SYNTHESIS FOR  DESIGN 

Practically  every  element  encountered in a pro- 
tective  structure  is  subjected  to  combinations of 
forces. As examples  consider: (1) A roof or wall 
slab of a rectangular  structure in soil  is  subjected  to 
lateral  load  (producing  flexure  and  shear)  and  to  axial 
load; (2) an  arch will be  subjected  to  a hoop compres- 
sion, of uniform  amplitude  around  the  rib,  and  even if 
it i s  fully  buried,  to  local  flexures,  at  least,  caused by 
non-uniformities in backfill or to  the  transients 
attending  the  envelopment of the  structure by the 
s t r e s s  wave; and (3)  a  cylindrical  structure  sur- 
rounded with soft  packing in rock is subjected  to both 
hoop compression  and  to bending. The  designer  must 
in every  case  determine  the  relative  magnitudes of 
each of the  forces  (moment,  axial  force,  shear,  etc.). 
Thus,  all of the  preceding  material  in  this  chapter  for 
a given structural  configuration  must  be  considered. 
Fortunately,  the  different  forces  cause  responses of 
the  structure which a r e  in  most  cases weakly coupled; 
therefore,  they  frequently  can  be  treated  separately 
and  directly  combined  in  a  pseudo-static  analysis. 

The  force  to  be  considered in the  trial  design is 
defined  normally by Eq. V-4.38.* Use of this  equation 

*For large  yield  weapons  and  the  blast  forces  nor- 
mally  considered in the  design of underground  struc- 
tures  the  duration of loading is usually long compared 
to  the  natural  period of vibration.  Thus,  the  assump- 
tion of a  step-pulse of infinite  duration is justified. 
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requires  an  estimate  to  be  made of only the  ductility of course, cannot exceed,  for  each  type of loading, ~.r, 
factor p . Choice of p is normally  left  to  the  de- given in the  preceding  section.  Members  are  de- 
signer's  discretion,  and  larger  values  should  always signed by the  concepts  presented  in  Section V-6.1. 
be  considered  since  they  reduce  the  value of force With the  trial  design  completed,  the  resulting  struc- 
to  be  used in the  design.  The  largest  value  selected, ture  is analyzed by methods given  in Chapters V-4 

V-6.1 

V-6.2 

V-6.3 

V-6.4 

V-6.5 

V-6.6 

V-6.7 

V-6.8 

V-6.9 

V-6.10 

V-6.11 

V-6.12 

V-6.13 

V-6.14 

V-6.15 

V-6.16 

V-6.17 

V-6.18 

V-6.19 

and V- 5. 
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